

I met a traveller from an antique land

Who said: "Two vast and trunkless legs of stone
Stand in the desert. Near them on the sand,

Half sunk, a shattered visage lies, whose frown

And wrinkled lip and sneer of cold command
Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,

The hand that mocked them and the heart that fed.
And on the pedestal these words appear:

`My name is Ozymandias, King of Kings:

Look on my works, ye mighty, and despair!'
Nothing beside remains. Round the decay

Of that colossal wreck, boundless and bare,

The lone and level sands stretch far away".

PART 1 LIVING WITH CYBORGS

How can we live in an age of technology which constantly appears
to dehumanise? How can we live in an age where whatever we are
is overwhelmed by global communication and information flows?
How can we live in an age where our opinions are instantly subject
to global knowledge bases, where trends and ideas flow faster than
our thoughts? How can we live in an age of science so advanced
we fail to understand or comprehend it other than by simplistic
metaphor which resembles a religious faith? How can we live in an
age where Art is anything and everything we want it to be and so
nothing?

Is it a case of sliding into consumerist ignorance, or joining in the
mass faith of technophiles. Or …

The Art of simple representation of a truth without metaphor.

www.jliat.com

.

An Alternative to Science
An Alternative to Philosophy
An Alternative to Metaphysics
An Alternative to Science Fiction
An Alternative to Complexity Theory
An Alternative to Art as Affect
An Alternative to Art as Sensation
An Alternative to Art as Abstraction
An Alternative to Metaphor
An Alternative to Tropes
An Alternative to Simile – Atoms are like…. Electrons are like…

Art as Representation.

Art as the revelation of individual immanence, as in the religious art of the
revelation of the world to the individual as fully comprehendible and experiential
by the individual.

In a techno-scientific world how is the average individual to experience directly
anything other than in confused ignorance. However in the history of western art
such problematics of complex theology were rendered in and by simple stories –
narratives that everyone could understand. Bereft of simile and metaphor the
stories are of simple immanent real events which render fully their meaning
without recourse to transcendental metaphysics. This work attempts to do the self
same by a full exposition of what is the current dominant technology which is
increasingly being (wrongly) mythologized into some future absolute being.

.

.

This is not intended as an introduction to Computer Science – even if it is - but as
a work of anti-representation and experiential philosophy Science Art.

Anti-representation of ideas regarding emerging technologies such as Artificial
Intelligence, smart algorithms and similar conceptualizations of computer
technologies. From the trivial and cosmetic regard given to smart phones, new
programming languages and computer applications – through to Dr. Bostrom’s
idea of the probability of this world being a computer simulation, Professor
Tippler’s idea of a future computer emulation of the dead, the ideas of Mind
Uploading, Democratic transhumanism, cybernetic immortalism, the
anthropomorphism and animism of digital technology (mythological and neo-
spiritualisms) in general but especially in the arts, humanities and political
ideologies of digital solutions to all and every problem, from learning to read
through to immortality.. as well as meta explanations and philosophical mash-up
problematics associated with Object Oriented Philosophies and Speculative
Realism’s pseudo scientific – ultra scientific - objects of transcendence.

Experiential in that knowing is not experiencing and in the above ideas and trends
of super-naturalizing logic lies a mistake in the idea that it is not possible to fully
and totally experience an object. This mistake arises from confusing quantity with
quality. It is quality which gives value, which in the end becomes transcendental
and so gains a religiosity. It is quantity which capitalizes the world. All non–
experiential philosophy, all rejection of the idea of quantity and its replacement
with quality becomes accidentally, despite itself or deliberately, a doxa. All
experiential philosophy becomes non philosophy as it becomes an experience of
a thing in it self as a totality.

This work addresses only digital computing and whilst other methods involving
Quantum or Biological materials may offer complex solutions to problematics and
desires, within the realm of digital processing, all processing is essentially of a
very simplistic nature. There are no “sophisticated” systems – only ever larger
ones in quantity NOT quality, digital processing structures which all operate and
depend on the simplest of all logics and simplest of all devices- The Switch.

If there are to be terminator cyborgs and Matrix Realities then these will be truly
remarkable structures in how the simple two way light systems used in ordinary
domestic houses can produce such artefacts. It is not the case that a future
artificial and higher intelligence will be an unknown to us, as humanity is unknown
to an euglena, but that these realities if they materialize will be completely
knowable to us in their fundamental mechanisms.

I wish therefore to remove or exorcise the ghost in the machine before it gets put
there. Any object or machine’s remoteness from us, from our understanding is
only a remoteness of physical quantity.

.

Haecceitics Part 1 Living with Cyborgs

1.

Introduction.

There are no “sophisticated” systems – only ever larger ones in quantity NOT
quality.

The manner in which a digital computer works is identical no matter what size or
power the machine has. It is not the case that newer and more exotic devices
have been added to enhance a basic design. The basic design has in the quantity
of devices – not in quality - been increased, the speed of processing increased but
without any fundamental change in architecture- and the size or compactness has
been decreased. But the “model” CPU (Central Processing Unit) used here has
no essential difference from the most powerful processing machines available
today, or in future, using digital technology.

The model uses “registers” – small bits of memory to process data, buses, wires
which carry data, and storage or memory. All the processing is undertaken by
simple switching, of a bi stable, on/off binary logic.

“Starting with the AMD Opteron processor, the x86 architecture extended the 32-
bit registers into 64-bit registers in a way similar to how the 16 to 32-bit extension
was done (RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, RFLAGS, RIP), and
eight additional 64-bit general registers (R8-R15) were also introduced in the
creation of x86-64. However, these extensions are only usable in 64-bit mode,”

Our processor has 1 register for processing of 3 bits and a memory capacity
(total) of 24 bits. Rather than a 64 bit bus it has a 3 bit bus and only 8 instructions.
However all of the functionality of a modern CPU can be accomplished with such
an instruction set. And we can fully know the totality of this functionality.

Haecceitics Part 1 Living with Cyborgs

2.

Haecceitics Part 1 Living with Cyborgs

3.

Each of the devices in the C.P.U. (Central Processing Unit) will be described and
then the functioning of the device. This will enable not only a phenomenological
access but a logical/physical access to the object. Apart from the trivial
“understanding” the idea of a totalizable object as a possibility will be presented,
this presentation has more of the idea of an Art as non sensationalism – but as full
disclosure of the world.

The basic component is a switch. There are two types – a simple on-off switch
(one way) and what is known as a two way switch.

We can construct all the devices of a CPU with these switches. The switches can
be made of anything, if we are using electricity then they need to be electrical
switches, but we could equally use water in which case the switches would be
“taps” - spigot or faucet in the U.S. In contemporary devices transistors are used.
A transistor is an electronic device which can either amplify a source, or it can act
as a switch. It is called a solid state device, it has no mechanical moving parts,
earlier computers used values (tubes) which perform the same switching
functions, or they used relays and even mechanical cogs. The use of transistors
and electricity is simply to reduce the size of the device and increase the speed. It
is not necessary to know how these switches work, the functioning of the CPU will
be identical no matter from what material they are made, or if the CPU exists
merely as a diagram or model.

Haecceitics Part 1 Living with Cyborgs

4.

Given these switches it is possible to construct simple devices for performing logic
and arithmetic. What we mean by logic here is very simple, they are the AND logic
“gate” and the OR logic gate. Logic gates will pass a signal in certain defined
circumstances, this is treated as a “TRUE” output. For instance with an AND gate
with two inputs both inputs must be true for the output to be true. For an OR gate
if either input is true then the output will be true. The OR gate is used in two way
switches on staircases in houses. So if a switch is ON or closed then the output is
true, or 1. If the switch is OFF then the output is false or 0. There are numerous
simple gates, we will just use the two mentioned here.

Haecceitics Part 1 Living with Cyborgs

5.

Haecceitics Part 1 Living with Cyborgs

6.

Haecceitics Part 1 Living with Cyborgs

7.

Now we can construct the devices we need for the CPU to function. First the
Control Unit. This routes signals along the BUS – the bus is a set of wires linking
the devices within the CPU. These wires have switches to allow data (electricity)
to flow or not. The switches are like railway points (switches in the U.S.). So if the
switches open the BUS at a memory location and the Arithmetic Logic Unit
(A.L.U) the signal will flow from the memory location to the ALU.

Haecceitics Part 1 Living with Cyborgs

8.

The input of the control gate comes from the bit pattern in the Control Unit. This is
termed “decoding” the instruction, but in fact all that occurs is that the 0s and 1s
open and close gates on busses using AND gates as above.

Haecceitics Part 1 Living with Cyborgs

9.

This whole process of “decoding” or carrying out an instruction is simply the
setting of switches on or off. Each instruction’s bit pattern relates directly to a set
of switch settings. Even in more complex computers in the final instance this is
what occurs, no mater how sophisticated the devices or whatever complicated
instructions in whatever computer language.

Haecceitics Part 1 Living with Cyborgs

10.

The Arithmetic Logic Unit (A.L.U.) performs all the data processing. It is again a
very simple device which adds binary numbers. Subtraction is performed by a
special method of adding numbers. This means a separate Subtraction device is
not needed. The “logic” is a simple “If” test. In this simple microprocessor only one
register is used, this is sometimes referred to as “The Accumulator”. Other
processors might have several “general purpose” registers for achieving the
same.

The ALU adds the two inputs and stores the result in the output register. The
overflow flag is set to 1 when the result can not be stored in the output. Arithmetic
is Binary.

8s 4s 2s Units

1 0 0 1 = 8 + 1 = 9 in decimal

Haecceitics Part 1 Living with Cyborgs

11.

This number system suits processing using bi-stable (two possible states, on / off
of switches) devices. The decimal system uses a base 10. So place values are
powers of 10. In binary, place values are powers of 2.

Subtraction is done by using complementary arithmetic. This seems odd but it
means no subtraction devices are required, and know programmed subtraction
‘behaviour’ is therefore needed. Multiplication and Division are done by repeated
addition and subtractions. 3 x 5 would be accomplished by adding 3s 5 times.

Multiplication and Division can also be achieve by “shifting” bits to the right
(division by 2) or to the left (multiplication by 2).

Using 3 bits the highest number we can store is + 7, 111 in binary = 1 x 4 + 1 x 2
+ 1 = 7. So the range of positive numbers is zero to seven.

If we use complementary numbers then the range is - 4 to +3.

 - 4 2s UNITS

 0 1 1 = +3
 1 0 0 = -4
 1 1 0 = -2
 1 0 1 = -3
 0 1 1 = +3
 0 1 0 = +2

If we ADD -4 to +2 this is the result.

100 +
010

110

Looking above 110 is -2.

So if I want to subtract 3 from 2 we compliment 3 and add. To complement we
alter all 1s to 0s and all 0s to 1s and then add 1.

011 = 3
100 = (1s complement)
+ 1

101 = -3 (2s complement = -4 + 1 = -3)

Now add this to 2 (10 in binary)

101 +
010

111 = -1 (-4 + 2 + 1) The correct answer without knowing how to subtract!

Haecceitics Part 1 Living with Cyborgs

12.

In larger CPUs other circuits are used as well to increase speed but the method
above is sufficient for arithmetic. The important point is to realize the underlying
principle of keeping things as simple as possible. In order to add larger numbers
than the size of registers the programmer simply breaks up the numbers into
smaller chunks and adds these with carry when needed. Typical CPUs use 8, 16,
32, and 64 bit registers.

To hold other data such as text some kind of code is needed. For instance A = 00
B = 01 C = 10 D = 11. Our 3 bits limits us to 4 alphabetic characters. 8 bits gives
us 256 possible letters (as used in acsii files) – enough for the alphabet of upper
and lower case. We could using 3 bits store the alphabet using something like
Morse code. If 000 = DASH 111 = DOT and 101 = SPACE. (110 is not used)

-- --- ·-· ··· ·
M O R S E

000000 101 000000000 101 111000111 101 111111111 101 111

To perform “Logic” simple arithmetic is used. If we want to test if two words are
the same for instance – you type in a password or user name and its checked to
see if it is “known” – if it is known the user is logged in if not access is denied.
Each letter being represented by a binary number the numbers are subtracted
and if the result is not zero then the match is false.

Using A = 00 B = 01 C = 10 D = 11

A – B is 00 – 01 which is -1 so A is not B

C – C is 10-10 which is 0 so C = C

We now have sufficient mathematics, logic and data storage to run a computer
program – application or app. And in ‘principle’ a program of any complexity we
currently see around us in games consoles, mobile phones, personal computers
and mainframes.

The circuit which is used in the ALU is a compound of “half adder” circuits. The
half adder performs simple addition – without a carry input. Full adders are made
by combining 2 or more half adders with other simple logic (AND) & (OR) gates.
The full adder having 3 inputs – 1 for a carry from any previous addition.

Haecceitics Part 1 Living with Cyborgs

13.

The half adder is made from an OR gate and an AND gate of simple switches as
shown above. Notice the output of the half adder has all the rules for addition we
need in binary arithmetic.

1 + 1 = 10

1 + 0 = 1

0 + 1 = 1

0 + 0 = 0

The rules for binary arithmetic are much simpler than for decimal.

0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 2
1 + 2 = 3
2 + 1 = 3
3 + 1 = 4
1 + 3 = 4
2 + 3 = 5
3 + 2 = 5
Etc.

Haecceitics Part 1 Living with Cyborgs

14.

We all “know” these rules of addition now – but we first had to learn these… if a
computer was to use decimal numbers the electronics would have to encode all
these rules. Only then would the computer “know” the rules. Epistemologically
knowledge is deeply problematic in philosophy, however the CPU can perform
arithmetic by simple coded operations no different in the input and the output (or
result) of human arithmetic. Knowing how to do arithmetic is in this
phenomenological aspect identical. The processes of human arithmetic might be
philosophically opaque or require some complex neurological explanation, this is
not the case in our example CPU. It consists of simple switching mechanisms.

Haecceitics Part 1 Living with Cyborgs

15.

The Instruction Pointer (or program counter) points to an address in memory.
Some kind of clock device will increment it each “tick” by adding one to it. In our
example this addition could be done via the ALU or the Instruction Pointer (I.P.) or
Program counter (P.C.) might have its own ALU adder circuit for this purpose.

How these Addresses in the Instruction Pointer are used to locate a specific
memory address is via the use of a set of control gates for each location. These
are set by locating the address pointed to by the I.P. using a De-multiplexer. This
uses AND gates and NOT gates. A NOT gate simply reverses the input logic, the
state. 1 become 0, 0 becomes 1. Or true becomes false, false becomes true. Its
very simple to construct using a transistor – in effect it’s a switch which is open
when it receives power and closes – allowing a current to flow when power is
stopped. Everyday examples are solenoids and relays.

It can be constructed using a half adder with one input permanently high (1)

It is a feature of these simple logic gates that we can make one type of gate out of
a mixture of others.

Haecceitics Part 1 Living with Cyborgs

16.

The AND gates here have more than two inputs but the logic remains the same.
ALL the inputs must be true for the OUTPUT to be true.

Inputs Output

 000 0

 001 0

 010 0

 011 0

 100 0

 101 0

 110 0

 111 1

The data and instructions from memory are selected via decoding an address
which sets the control lines – blocking all unwanted locations and selecting the
one to which the address points. This is called decoding, which can have
anthropomorphic implications for a process which uses just simple switches.

A control gate uses a single line to control several other lines – or BUS.

Haecceitics Part 1 Living with Cyborgs

17.

Haecceitics Part 1 Living with Cyborgs

18.

Haecceitics Part 1 Living with Cyborgs

19.

Haecceitics Part 1 Living with Cyborgs

20.

The example above uses a 2 bit address and 4 memory locations. Our CPU uses
a 3 bit address and 8 memory locations. The principle is the same – the AND
gates merely take 3 inputs. Our CPU is a theoretical object simplified in order to
gain a direct experience and knowledge of the object. However actual computer
hardware we have said is no different in quality. In the case of a three address to
8 location decoder there actually exist physical devices for this task.

Haecceitics Part 1 Living with Cyborgs

21.

The extra inputs just select the device’s operation mode – again using simple AND
logic.

Haecceitics Part 1 Living with Cyborgs

22.

The simple nature of using only a three bit address means that only 8 locations
can be used as memory, we can have a maximum of 8 instructions, and can
count only up to decimal 7. (111 is 1 four plus 1 2 plus 1 one.)

2

3
 is 8. Given 8 locations of 3 bits gives us 24 bits of memory.

000000000000000000000000 = 24 bits all set to zero

Running through the possible sequences of zeros and ones in memory we in
effect count from 1 to 2

24
.

000000000000000000000000
000000000000000000000001
000000000000000000000010
000000000000000000000011
000000000000000000000100
000000000000000000000101
000000000000000000000110
000000000000000000000111
000000000000000000001000
 …………
111111111111111111111111

Each of these represents a “Program” which we can store and attempt to execute
in the CPU.

Haecceitics Part 1 Living with Cyborgs

23.

Working through all the possible sequences allowed using 0s and 1s in 24 bits will
give us ALL of the possible “programs” / “data” which our CPU can store and
process. Some – 00000000000000000000 will do nothing at all, most will do
nothing at all.

Counting up all these sequences we find there is in total 16,777,216. This is the
totality of what this simple CPU can code. The CPU has a totalizable universe,
however even with only 3 bits this is over 16 million variations. Most personal
computers have memories of gigabytes. 1 gigabyte is 8,589,934,592 bits, 8 billion
bits – so a potential for well over 2

8 billion
 possible programs/data exists for personal

computers of 1 gigabyte of RAM or more.

Each time any input is required during any of the programs, (The execution of the
IN Instruction) any one of 8 possible inputs can occur, and will be loaded into the
Arithmetic Logic Unit. Therefore all possible input permutations would also need
to be examined if a “total” picture of he CPUs totality of states is to be ‘known’. In
the case of our CPU this is 8 possible inputs – (000, 001, 010, 011, 100, 101,
110, 111) for every time the IN Instruction was encountered in the list of all total
programs. Larger computers allow for far more data to be input which would
further increase the number of totalizable machine states for those machines.

To compare human brains to computer memories is difficult but it has been
estimated “the total information storage capacity of the synapses in the cortex
would be of the order of 500 to 1,000 terabytes.” A simple mechanistic view
shows the difficulty in thinking ‘metaphysically’ with these very large numbers. By
which I mean the scales though known and determinate are not easy to
experience. Human thinking in terms of logic and arithmetic can appear similar if
not identical in its results if not methods to those of digital computers, but other
human behaviour exhibits far more subtle variations. This supposed ability for
digital computers to make logical decisions yet fail to exhibit “emotion” is an
obvious source of novelty for science fiction. As if a few more “gates”, and larger
registers would or could somehow alter the behaviour of a fixed state machine to
the extent it becomes “human”. The more ‘pessimistic’ idea that human novelty
and subtly might just be an appearance found in larger fixed state machines is not
as popular a theme in fiction but is in the cybernetics of “uploading” human minds
into computers in order to gain some kind of evolutionary advantage, such as
possible immortality.

Even with possibly the simplest of ‘objects’ – our ‘theoretical’ fixed state CPU the
permutations of states are large enough to require years of study to fully ‘know’
and experience all of these states. Real objects such as simple as micro-
organisms, molecules or crystals will have far many more possible states. I’m
aware of the ideas of ‘probability’ and ‘uncertainty’ associated with Quantum
Physics in the study of such objects, though I am in no position to discuss this
further complication of our possible knowledge of actual objects, however given a
set of probabilities I can not see why in theory if not in practice all of these
possible states can not be ‘known’ and explored. The result would be a set of
possible states of a colossal number, but it would still be finite. Such numbers are
incomprehensible for humans. Such numbers – colossal determinate states -
relate to even the simplest of ‘real’ objects. This offers an alternative explanation
for the seeming limits of human knowledge which is not metaphysically excluded

Haecceitics Part 1 Living with Cyborgs

24.

or limited, but physically, quantitatively removed or excluded from human
experience. Metaphysics’ ‘unknowable’ ‘Thing in itself’ – Kant’s ‘Ding an sich’ -
might just have in its totality a fixed and knowable limit, but one that is far greater
than the possibility of ‘human’ comprehension. Contemporary philosophers
(Object Oriented Ontologists) argue that the simplest of objects “withdraw” from
us in some infinite and mysterious way, this might be the case, or it might be that
their totalizable permutations are not totalizable for humans. This implies some
form of correlationism in their thinking – an anthropocentricity which seems to think
that the unthinkable and the unthinkable for-humans are in some way identical,
when in simple binary instruction sets, their unthinkability lies only in the size of
permutations and not in some subtleties of possible or probable essences.

Similar fallacies of spookiness occur in imagining sub-atomic particles or the
scale of cosmic distances. Our pictures of the subatomic and the cosmic are
representations which omit the magnitudes involved. For instance if our sun was
the size of an audio CD (5 inches / 9 cm) then the nearest star would be a disk
just over half an inch, 830 miles away. Yet in science fiction “worlds” can and
often do collide.

Though we have knowledge of simple objects, we cannot fully experience them,
and we resort to a metaphysics of remoteness, of “withdrawnness” which
becomes like if not actually ‘spiritual’ religiosity, a poetics, towards these physical
realities which are present to us. Because I can not experience the totalizable
possibilities of an object then I can simply call this infinite and say its withdrawn
from me. Even a simple object like a personal computer. However the
impossibility is not one of sophistication but simply of quantity. Our simple CPU
allows us to grasp its totality, even if its 16 million. If I count or write 2 digits each
second it would take, working an 8 hour day, 277 days to count and experience
each possible state. To know each of the states these programs would put the
CPU into would require much longer time, perhaps many years, but it is with our
simple CPU achievable. This would represent, would be, the full experience of our
CPU’s totality. This is possible, however counting to 2

8 billion
 is not possible, so not

experienceable. But the reason this is not experienceable is not that it is more
intellectually difficult, but simply we do not live long enough to be able to do this.

Given we walk at 4 miles an hour and live some 70-80 years that gives us our
longest possible walk. (39,967,500 miles – our sun is 91 million miles away) There
is however nothing mysterious, transcendentally mysterious, metaphysically
mysterious or alluring, in longer distances, the difference is that we can not
directly experience them, even if we can know them. Their withdrawnness is
nothing mysterious, is no more mysterious than the object being on a shelf too
high for us to reach. The actual experience of a simple CPU or of a walk of 20
miles gives us the ability to appreciate this withdrawnness as what it is for us.

Haecceitics Part 1 Living with Cyborgs

25.

Our simple CPU has a total of 16,777,216 programs and no more. It is possible to
know each of these and discover what they do. This might take some years but at
the end of this laborious process the object will have been fully realised to us.
There is then no problem such as Turing’s Halting problem, we will know all the
outcomes, there will be no uncertainty, no Gödel like “events”.

Why we cannot do this for other objects – a least other digital objects is simply a
matter of time. We can never complete these tasks due to our limited life
expectancy and not due to some limitation of cognition.

An even simpler “universe” or object of two bits consists of 4 states in total. These
can be “fully” realised.

Once we have understood the basic CPU operations rather than scale these up
into the humanly incomprehendable sizes of contemporary computers we can
scale down to a “two bit universe” where our knowledge can be complete.

And this is what the second part of this book will actually do, and in doing so we
can have an “aesthetic” of a complete object. And in doing so strangely there will
be no uncertainty, no Gödel like “events”. There will be no ‘Halting problem’, we
will know all the outcomes, we will even see that any program which terminates
prior to its totality has – without recourse to its totality – a fixed outcome.

0 0

0 1

1 0

1 1

Haecceitics Part 1 Living with Cyborgs

26.

If we wanted to fully experience and know the totality of states of our simple CPU
we first need to understand its machine code. Machine code is code written with
the actual instructions of the processor, ours here has 8, the early Intel 4004 had
256 Instructions the "The total number of x86 instructions is well above one
thousand".... These “Machine Code” instructions of our CPU are again very
simple, but are no different in kind to the much larger instruction sets of “real”
CPUs. Furthermore ALL programming languages are decoded or translated into
these simple instructions, it is these simple machine instructions – AND NONE
OTHER – that any computer actually executes.

Haecceitics Part 1 Living with Cyborgs

27.

Operation Code Operation Code Operation Code Operation Code
–––– Op Code Op Code Op Code Op Code

Mnemonic (Mnemonic (Mnemonic (Mnemonic (abbreviatedabbreviatedabbreviatedabbreviated
text)text)text)text)

MeaMeaMeaMeaningningningning

000000000000 HLTHLTHLTHLT HALT HALT HALT HALT –––– Stop running Stop running Stop running Stop running

001001001001 ININININ Get input from input reg and load Get input from input reg and load Get input from input reg and load Get input from input reg and load
it into the it into the it into the it into the ALU ALU ALU ALU

010010010010 OUTOUTOUTOUT Put the Put the Put the Put the output of the output of the output of the output of the ALU ALU ALU ALU iiiinto nto nto nto
the output registerthe output registerthe output registerthe output register

011011011011 LDALDALDALDA Load the Load the Load the Load the ALU ALU ALU ALU with data from the with data from the with data from the with data from the
given (following) addressgiven (following) addressgiven (following) addressgiven (following) address

100100100100 STOSTOSTOSTO Store the Store the Store the Store the ALUALUALUALU’s output at ’s output at ’s output at ’s output at the the the the
given addressgiven addressgiven addressgiven address

101101101101 JNZJNZJNZJNZ Branch (go to) the given address Branch (go to) the given address Branch (go to) the given address Branch (go to) the given address
if the output of the if the output of the if the output of the if the output of the ALU ALU ALU ALU isisisis NOT NOT NOT NOT
zerozerozerozero

110110110110 JOVJOVJOVJOV Branch to given address if Branch to given address if Branch to given address if Branch to given address if
overflow flag setoverflow flag setoverflow flag setoverflow flag set

111111111111 ADDADDADDADD Add the two registers in the Add the two registers in the Add the two registers in the Add the two registers in the ALU ALU ALU ALU

Haecceitics Part 1 Living with Cyborgs

28.

All the first computer languages were machine code. Hardwired circuits
sometimes, or switches set appropriately. i.e. to set the LDA instruction the
memory location would have 3 switches set to OFF ON ON. The difficulty of
“reading” these programs led to the first artificial computer language called
“Assembly” Code. Here rather than use binary digits simple mnemonics are used.
As shown above in our instruction set chart. A program was then used which
translates these into actual binary code. There is a one to one relationship
between an assembly mnemonic and the ACTUAL binary code. Only the actual
binary code is ever executed. Later “Higher Level” languages were introduced to
make programming simpler for humans, these still need to be “translated” into
machine code. Because of the seeming sophistication of these high level
languages there has developed amongst even computer programmers “myths”
about languages and operating systems. All languages such as those used in
Artificial Intelligence, or in searching databases… no matter what function they
perform – unless they are first translated into simple machine code, these
programs, cannot be executed. A powerful search algorithm such as this-

SELECT column_name(s)
FROM table_name
WHERE column_name LIKE pattern

cannot run on any computer without being translated into machine code. In this
case many lines of simple machine code would be generated to perform the task
by shifting and comparing (by subtraction) bits. Programs written in C++, Java,
operating systems such as Linux and Windows, Browsers, computer games,
video playback and music… all run as simple machine code. Java runs in a “virtual
computer” – the Java Runtime – which will be machine code. Because Machine
Code is specific to a particular processor, a program written for an Intel CPU will
not run on any other processor whose architecture (Bus size, registers etc) is
different. AMD processors “copy” the Intel architecture. This creates a problem for
‘porting’ programs from one CPU architecture to another. A program running on
an Intel / Windows “platform” (Platform is the Hardware and operating system) will
not run on an Android device, without re-compiling – re-translating. The Java
language tries to solve this problem by creating a “virtual” java computer for each
“platform”, so the java programs can run independent of any particular platform. If
your phone or computer has a Java Runtime written for it and installed on it, it can
run any Java Application. The downside is the running of the “Virtual Java”
machine slows things down.

Haecceitics Part 1 Living with Cyborgs

29.

In our instruction set some instructions are “complete”, HLT, IN, OUT. These use
just 3 bits. LDA, JNZ, JOV, STO, ADD all require an address following the
instruction. For instance the STO instruction stores the output of the ALU at some
address – so the next 3 bits following it will be that address. Our computer uses a
3 bit “word”. Most computers use 16, 32 or 64 bit words. So some instructions are
“Double Word” instructions. Again this is typical in many CPU architectures.

Above is an “REAL” instruction set. It uses an 8 bit WORD and has 1,2, and 3
word instructions.

The operation sequence of the CPU. The CPU uses the Instruction Pointer to find
the address of the next required instruction, this instruction is loaded into the
Control Unit. The CPU then Increments the Instruction Pointer and only then is the
current instruction executed by decoding it, by setting the appropriate gates via
control lines to the computers BUS. For 2 word instructions this “cycle” occurs
twice, the second time to access the address. Each Fetch (Instruction) , Reset
(Increment) and Execute is a cycle. So in our CPU some instructions take one
cycle others two.

We will now look at each instruction.

Haecceitics Part 1 Living with Cyborgs

30.

IN
This gets the contents of the Input/Output register and stores it in the ALU.

We have a simple program in memory. How this is executed in detail will be
explained latter.

Haecceitics Part 1 Living with Cyborgs

31.

The IN instruction copies the contents of the Input/Output register to the left side
of the ALU (Sometimes called the Accumulator). Other CPUs might not have a
single “Accumulator” register but several. Again to speed up processing – more
quantity – not quality.

How the I/O register is copied to the ALU is accomplished is by the “Decoding”
and setting of control gates so the data in the I/O register flows into the left side of
the Accumulator. All the other gates being set closed.

Haecceitics Part 1 Living with Cyborgs

32.

ADD
This copies the data at the address given by the next 3 bits into the right side of
the ALU (accumulator), again by setting the appropriate control gates, then adds
using the adder circuits described above, storing the result in the output side of
the ALU. If when adding an overflow occurs the overflow flag is set.

The ADD instruction 111 is at memory location 001. It is placed in the Control
Unit.

Here the following the ADD instruction, 111, is the address of where to get the
data to add. In this case 110. The location 110 has the value 001 stored in it.

Haecceitics Part 1 Living with Cyborgs

33.

The data is fetched and placed in the right side of the ALU. The two numbers are
Added using the Adder circuits described above and the result stored in the ALU’s
Output register. 010 + 001 = 011 (2 + 1 = 3)

Haecceitics Part 1 Living with Cyborgs

34.

Here the data at Address 110 is 110. When added to 010 the result is an overflow.
010 + 110 = 1000 (2 + 6 = 8) . In practice programmers would need to be aware of
the possibility by testing the flag after addition then completing the addition by
using the carry into another addition process. Our limited CPU is not capable of
this, not from any lack of processing ability but by the size of its memory.

Haecceitics Part 1 Living with Cyborgs

35.

OUT
The OUT instruction copies the contents of the ALU’s output register onto the
BUS and into the Input/Output Register.

Above: The instruction is FETCHED and placed into the Control Unit

The Instruction Pointer is incremented.

Haecceitics Part 1 Living with Cyborgs

36.

So we display the output of the result of our addition. The Instruction pointer is
now pointing to 100 in memory.

Haecceitics Part 1 Living with Cyborgs

37.

HLT
At location 100 in memory is the code 000. The HALT instruction. This is loaded
into the Control Unit and executed. The Instruction pointer is incremented and
then the program stops.

The Halt instruction is loaded into the Control Unit.

Haecceitics Part 1 Living with Cyborgs

38.

The Instruction pointer is now pointing to location 101. This is because the
processing sequence in CPUs is typically – Fetch Reset Execute.

Fetch = Get the instruction from the address in the Instruction pointer and load it
into (copy it into) the Control Unit.

Reset = Increment (in our case add 1) the Instruction pointer (so its pointing to the
next instruction- (the address in memory of this instruction).

Execute = Decode the instruction.

This F.R.E. cycle occurs at set intervals dictated by the clock, (The speed of the
CPU) or if manually processed by simply changing the values in the Instruction
pointer – using switches. The latter used to take place in de-bugging, stepping
through the program slowly examining the registers to see precisely what was
happening. Modern high level languages still allow this to take place – even at the
level of monitoring the CPUs registers as the code is run one instruction at a time.

Haecceitics Part 1 Living with Cyborgs

39.

LDA

STO
Load ALU (Sometimes called the accumulator – “ACC”) & Store the contents of
the result register – the output of the ALU.

Haecceitics Part 1 Living with Cyborgs

40.

The ALU is loaded with the data at the address 111 in memory = 010 (2).

Haecceitics Part 1 Living with Cyborgs

41.

The ADD instruction uses the address following it – 110, to locate the data.
Looking at location 110 we see it contains the data 100. This is placed in the right
side of the ALU and added to the left, the result stored in the ALU’s output
register. 010 + 100 = 110

The STORE instruction stores the result at the location given – 111. This
overwrites what was in that location. The data is 110 or 6 in decimal. The program
loaded the ALU with the number 4, ADDed the number 2 and stored the result 6
at location 111.

Haecceitics Part 1 Living with Cyborgs

42.

JNZ

JOV
The two jump instructions allow the CPU to makes “decisions”. Anthropomorphist
interpretations of this action should be avoided unless a radical re-appraisal of
human thinking is to take place, and this is not suggested here! Once again it is
the operation of simple switches, no more complex than those found in a
domestic home. The decision allows not only one of two outcomes to be selected
it also allows looping and repetition of code.

The JNZ instruction (op code) will copy the contents of the address given by the
next 3 bits into the Instruction Pointer, and so program execution will continue at
that address and not sequentially, i.e. not the address following the JNZ
instruction. This occurs only if the contents of the Accumulator’s output register is
not zero. This allows all decisions to be made. The JOV instruction does the same
if the overflow flag is set, and is needed in arithmetic where numbers or results
are larger than 3 bits. Once again “real” processors are no different other than the
number of JUMP instructions will be greater- an increase in quantity not quality.
These might include an unconditional JUMP or goto, jump if zero, jump if greater
than zero etc.

The “decision” process is a simple decoding and setting of switches on the bus
which copies the contents of the following memory location to the Instruction
Pointer. This is similar to railway yard shunting operations even to the extent that
the U.S. term for railway “points” (U.K.) is “switch”.

The “test” is extremely simple. The 3 bits of the output register (A.K.A. result
register) of the A.L.U are inverted (negated) via 3 “NOT” logic gates, “ANDED”
and this result inverted through a NOT gate. This gives a “true” control line only if
the ALU result register is not zero. This can be seen by looking at the “truth table”
for the operation.

Haecceitics Part 1 Living with Cyborgs

43.

Now we will step through the process of execution of the JNZ - Jump IF NOT Zero
Instruction.

Haecceitics Part 1 Living with Cyborgs

44.

For simplicity the program begins with a non zero in the ALU result/output
register, yet we start at address 000. (normally some operation by the ALU would
precede a Test and Jump instruction.) The first instruction to be loaded into the
Control Unit will be 101 – the JNZ – Jump if NOT Zero instruction. At the next
location which is 001, is a pointer to where the address is to be loaded into the
Instruction Register IF THE ALU is NOT ZERO. Use of such addressing
techniques is common in CPU architecture. Though this may seem at first
confusing it allows greater flexibility in programming and is no more sophisticated
than regarding someone’s address as “two doors down the road” – or “take the
second turning on the right”..

Addresses can be ABSOLUTE i.e. 12 OAK Street- or RELATIVE – take the third
left from where you are now.

Haecceitics Part 1 Living with Cyborgs

45.

Above the JNZ instruction is LOADED with the “FETCH” and the Instruction
Pointer incremented to point to the next memory location – 001 “RESET”

Haecceitics Part 1 Living with Cyborgs

46.

The JNZ is decoded which uses the pointer at 001 (011) – goes to that address –
which contains 111, and then will load that (111) into the Instruction Pointer,
causing it to “JUMP” (or point to) to that (111) location.

Haecceitics Part 1 Living with Cyborgs

47.

The Instruction Pointer now points to address 111 which contains 000 which will
be interpreted by the Control Unit as HLT- Halt. NOTE: The binary 000 can be a
number (0) an address (the first location in memory) or an Instruction – HLT (Halt).
Likewise 010 is either decimal 2, or the third location in memory, or the OUT
instruction. This is a common feature in CPU architecture. Data, Addresses and
Instruction all share the same memory space. This is a feature of Von Neumann
architecture (Named after its inventor).

Haecceitics Part 1 Living with Cyborgs

48.

Now the Control Unit executes the HLT. NOTE: The lighter locations in Memory
are never used, they are “Jumped” over. Sometimes this is shown as –

--- i.e. The contents are unimportant as they are never used.

Haecceitics Part 1 Living with Cyborgs

49.

This shows how a program can continually loop for ever.

The ALU has been preset with data to show the looping.

Haecceitics Part 1 Living with Cyborgs

50.

The Instruction has been FETCHed and the Instruction Pointer Incremented to
The next instruction @ 010.

Haecceitics Part 1 Living with Cyborgs

51.

When the instruction is EXECUTED the Instruction pointer is overwritten with the
JUMP Address – 000 – The beginning of the program!

So the program will loop forever. Normally a loop is controlled by a number –
loaded into the ALU and reduced by 1 each time. This is how the program can
loop through a sequence a fixed number of times. Or it might loop until the
overflow is set or some other condition. If the programmer and or logic creates a
situation where the test is never met then a continuous and perpetual loop will
occur. Famously described in Turing’s Halting Problem. Without running all
combinations of the program it is impossible to decide if it will run and halt or loop
forever.

Haecceitics Part 1 Living with Cyborgs

52.

Program to compare input with memory, Loop if not zero otherwise halt.

This is the prototype of some kind of password or user login to a system, it shows
how “decisions” are made in machine code. Our program will loop until the correct
input and then stop. In actuality 3 tries might be given and far from halting other
programs loaded for the user to interface with.

Basic Algorithm

1. Get Input
2. Load Accumulator with Stored Data (Stored Data is in 2s compliment
form)
3. Add the stored data to the input
4. If not zero (input = “password”) jump to start
5. Otherwise HALT

000 000 000 000 INP INP INP INP ---- input data input data input data input data
001 ADD 010001 ADD 010001 ADD 010001 ADD 010 ---- add data pointed to at address 010 add data pointed to at address 010 add data pointed to at address 010 add data pointed to at address 010
010 010 010 010 111111110000 ---- 010 is data stored in 2s compliment 010 is data stored in 2s compliment 010 is data stored in 2s compliment 010 is data stored in 2s compliment
011 JNZ011 JNZ011 JNZ011 JNZ 111 111 111 111 ---- If Accumulator not zero jump to start If Accumulator not zero jump to start If Accumulator not zero jump to start If Accumulator not zero jump to start
100100100100 000 000 000 000 ---- Address of start of program Address of start of program Address of start of program Address of start of program
110 HLT 110 HLT 110 HLT 110 HLT ---- End of program End of program End of program End of program
110 110 110 110 111110101010 ---- data “password in 2s compliment” data “password in 2s compliment” data “password in 2s compliment” data “password in 2s compliment”
111 000111 000111 000111 000 ---- Address for JUMPAddress for JUMPAddress for JUMPAddress for JUMP

Programmers sometimes “run” a program using pencil and paper to follow the
logic. I effect “running” the program without a computer. Called “Dry Running”

Here all the possible outputs of the ALU’s ‘response’ to input are shown. Only the
‘correct’ input leaves the output of the ALU as zero.

Possible inputs are 000 001 010* 011 100 101 110 111
*correct password

Carry flag not set in first two examples only.

000 Input
110 2s comp
--- +
110 Result

001 Input
110 2s comp
--- +
111 Result

010* Input
110 2s comp
--- +
000 Result

011 Input
110 2s comp
--- +
001 Result

100 Input
110 2s comp
--- +
010 Result

101 Input
110 2s comp
--- +
011 Result

110 Input
110 2s comp
--- +
100 Result

111 Input
110 2s comp
--- +
001 Result

Haecceitics Part 1 Living with Cyborgs

53.

The program – here we will input 010, the correct password.

The DATA is input to the ALU.

Haecceitics Part 1 Living with Cyborgs

54.

The add instruction ADDS the data to the ALU from memory location 110. The
data is 2 in 2s complement. The addition results in a Zero – the overflow is
ignored.

The JUMP IF NOT ZERO is executed – the Result is zero – NO Jump takes place –
the Instruction Pointer is pointing to the next instruction at 101, which is HLT.

Haecceitics Part 1 Living with Cyborgs

55.

The HLT instruction is executed – the program stops. Notice the Instruction pointer
is now pointing to 110 – where data is stored. This never gets executed as the
HLT stops the program.

A common error is when data gets treated as code. Notice there is no way of
telling code from data, or from an address. In ‘real’ systems such situations where
data or code gets confused with addresses through some error an “illegal
address” or “illegal instruction” can be created.

Philosophically this is a ‘real’ example of the arbitrariness of signs, and
demonstrates that the meaning of a sign, at least binary digits is dependent on
“context” and not some innate quality.

Haecceitics Part 1 Living with Cyborgs

56.

Now we will input 001. Not the correct “password”.

As before the Data is loaded into the ALU.

Haecceitics Part 1 Living with Cyborgs

57.

The Addition takes place resulting in 111.

The jump if not zero is executed. This time the IF statement is true. The
Instruction pointer is pointing to the next instruction-

Haecceitics Part 1 Living with Cyborgs

58.

But on execution the Program Counter is overwritten by the address stored in
location 111.

The program loops back to get another TRY.

Haecceitics Part 1 Living with Cyborgs

59.

This completes our overview of the simple CPU and its operations. Even with
three bit data, address and instruction set as mentioned above there are a totality
of over 16 million programs. Though this totality is fixed, and many of these will
not be ‘runable’ programs they are not removed from our (possible) full and total
knowledge of them.

As a possible alternative model, if not to an understanding or definitive knowledge
it is surprising to experience the exponential nature of such simple binary
systems. If we increase our “word” size from 3 to 4 bits our address space
becomes 16 locations of 4 bits, or 64 bits. It follows that there are then in this case
2
64
 programs in total. 2

64
is 18,446,744,073,709,551,616 or Eighteen quintillion,

four hundred forty-six quadrillion, seven hundred forty-four trillion, seventy-three
billion, seven hundred nine million, five hundred fifty-one thousand, six hundred
and 16. An uncountable number and un-knowable number of fixed programs.
Within the process of increasing sizes even more by only a few bits the limits of
what is physically possible given the age and size of the universe as we know it is
insufficient for a total knowledge of these computer models.

Computer scientists do not need to concern themselves with such possibilities,
though they represent not a contingency but an actuality which is not
experienceable to us. Here are limits like the dragons on old maps but these limits
are manifestly real. These realms of higher bit sizes are those which we use in our
daily interfaces with digital technology. They offer richer and seemingly actual
objects as rich as those outside of the domain of bit strings – if such a domain is
the one in which we find ourselves. They can and do allow for the richness and
subtitles of images, sounds, languages. Of philosophies and metaphysical
speculations in on-line blogs, pdf books and recorded seminars and lectures
which postulate objects and our knowledge of them. Being a non-scientist and
working from a simple ‘Artistic’ perceptive of representation, a dangerous position
with such domains, the scope is beyond representation, even a 4 bit universe
eludes any representation which is fully shown and known.

We can however move in an opposite direction. With 1 bit we can only have two
states – 1 or 0. With 2 bits we can have 4 - 00,01,10,11. An address space of 4,
each “word” now only 2* bits, we can even count the size, 8. 2

8
 is 256. 256

possible programs and not so many more total states for such a machine universe
of fixed states. So it is possible to map these “virtual” machine universes… my last
thoughts here are such a mapping would be too naïve to be computer science. It’s
vocabulary appears insufficient for philosophy or metaphysics, it might be a
simple ontology, a naïve ontology, but it would not be speculative or contingent
but would be actual. Is the actualization of these simple ontologies possibly art? If
not what is their ontological status – given their epistemological states are totally
known?

*There are more than one possible such machine universe using only 2 bits but
each is fixed and totalizable.

PART 2 HAECCEITICS. THE AESTHETICS OF TOTALIZABLE
OBJECTS.

The actualization of the aesthetic object as a totality.

Part 2 Haecceitics The aesthetics of totalizable objects.

63

A simpler CPU of only 2 bits gives us a 2 bit “word”, 4 possible instructions or
operations, (op codes) and a memory space of 4 words. A total of 256 programs
in all.

An even simpler instruction set.
one of many possible for a 2 bit CPU

00 = stop
01 = in – Load ALU (Accumulator) from input/output register
10 = out Display ALU (Accumulator) – on input/output register
11 = add the data following this instruction - the following 2 x 2 bits

256 possible programs –

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011

00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111

01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111
10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011

10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111

11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

Part 2 Haecceitics The aesthetics of totalizable objects.

64

Such an totality of programs can be catalogued as to their actions given this
instruction set. This can be achieved simply by working through each program
‘manually’ – sometimes called ‘dry running’, or a computer program can ‘model’
the actions of this hypothetical CPU. An emulation. Or one could be built from
discrete hardware components.

Here is a screen shot of an emulation of our 2 bit CPU. The primitive instruction
set is shown, the 8 bits of memory, program counter, the ALU / Acc (Accumulator)
with an overflow flag which is set when addition results in overflow. In this case
any number higher than 3.

Part 2 Haecceitics The aesthetics of totalizable objects.

65

Above a program is loaded into memory which will Add two numbers (01 + 10)
then HALT. The “- -“ indicates the contents are not known, some CPUs will clear
registers and memories. Before running…

The Control unit executes the ADD instruction. 01 + 10 = 11.
(1 + 2 = 3) The Program Counter is pointing to the next instruction.

Part 2 Haecceitics The aesthetics of totalizable objects.

66

The Control Unit has the instruction @ 11 loaded which is 00 – the Halt instruction.
Note the Program Counter has overflowed. As the Program Counter is
incremented BEFORE the instruction is carried out. This doesn’t matter as the
HLT stops the program. If it did not the Program counter is now pointing to
address 00 so the program would run again, and forever.

So even such a simple CPU and Instruction set can perform arithmetic, and the
outcome of a program might be that it HALTs or it could run forever. So this
duplicates - demonstrates Turing’s Halting Problem.

This program “00100111” is the # 40 in the list of all possible programs given
above.

Part 2 Haecceitics The aesthetics of totalizable objects.

67

This program demonstrates the continuous looping performed by not Halting
program execution.

The program will input the Data in the I/O register, then Add location 10 to
location 11 storing the answer in the Acc Output. The output of the ALU. This will
overwrite the input from the I/O register. (The I/O functions in such a simple model
have little functionality..) As the Program counter before the ADD instruction is
completed will be incremented by 1 from 11, it will overflow, leaving 00 in the
Program counter. As this model CPU does not take any action when an overflow
occurs it will resume processing @ address 00, and so repeat the program
without ever halting.

Part 2 Haecceitics The aesthetics of totalizable objects.

68

The program copies the I/O register into the ALU. The input of the Accumulator.

The Acc Out shows the correct answer. The Program Counter has overflowed and
now points to address 00.

Part 2 Haecceitics The aesthetics of totalizable objects.

69

The program loops – re inputs the I/O – will then add the two numbers… etc.

Part 2 Haecceitics The aesthetics of totalizable objects.

70

This program halts immediately as do all programs which begin with 00.
There are 64 out of the 256 programs which do this.

Part 2 Haecceitics The aesthetics of totalizable objects.

71

An online version of this emulator is available here WWW.JLIAT.COM/SMPU

Part 2 Haecceitics The aesthetics of totalizable objects.

73

Any program which begins with 00 will immediately HALT. Therefore these will not
need to be examined further to see if they will not do so. It might be thought that
any program not ending with 00 will not halt, but this is not the case. A full
examination of all these programs follows.

256 possible programs –
+---+--+--+--+--+---+
! # !Program ! Action
+---+--+--+--+--+---+
! 1!00 00 00 00! Program Immediately Halts
+---+--+--+--+--+---+
! 2!00 00 00 01! Loads Acc with Data (00,01,10,11)then Halts
+---+--+--+--+--+---+
! 3!00 00 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
! 4!00 00 00 11! Adds 00 to 00 then Halts
+---+--+--+--+--+---+
! 5!00 00 01 00! Program Immediately Halts
+---+--+--+--+--+---+
! 6!00 00 01 01! Loads Acc with Data – twice – & then Halts
+---+--+--+--+--+---+
! 7!00 00 01 10! Output, Acc Load Acc with Data then Halts
+---+--+--+--+--+---+
! 8!00 00 01 11! Adds 01 to 00, then Halts
+---+--+--+--+--+---+
! 9!00 00 10 00! Program Immediately Halts
+---+--+--+--+--+---+
! 10!00 00 10 01! Load Acc with Data, then outputs this Data, then Halts
+---+--+--+--+--+---+
! 11!00 00 10 10! Outputs Acc x 2, then Halts
+---+--+--+--+--+---+
! 12!00 00 10 11! Adds 10+0 then Halts
+---+--+--+--+--+---+
! 13!00 00 11 00! Program Immediately Halts
+---+--+--+--+--+---+
! 14!00 00 11 01! Inputs Data to Acc, adds 00 to 00, PC increments to 100 ovrflw
 Gets 01 @ 00 inputs data.. endless loop
+---+--+--+--+--+---+
! 15!00 00 11 10! Outputs Acc, adds 0+0, PC increments to 100 ovrflw
 Gets 10 @ 00 inputs data.. endless loop
+---+--+--+--+--+---+
! 16!00 00 11 11! Adds 11+0, then Halts
+---+--+--+--+--+---+
! 17!00 01 00 00! Program Immediately Halts
+---+--+--+--+--+---+
! 18!00 01 00 01! Lds Acc then Halts
+---+--+--+--+--+---+
! 19!00 01 00 10! Outputs Acc then Halts
+---+--+--+--+--+---+
! 20!00 01 00 11! Adds 0+1, then Halts
+---+--+--+--+--+---+
! 21!00 01 01 00! Program Immediately Halts
+---+--+--+--+--+---+
! 22!00 01 01 01! Lds Acc x 3 then Halts

Instruction set Number # 1
Acc = Accumulator

00 = stop
01 = in – lda with input
10 = out disp acc
11 = add dta following 2 x 2bits

Part 2 Haecceitics The aesthetics of totalizable objects.

74

+---+--+--+--+--+---+
! 23!00 01 01 10! Output Acc, Lds Acc x 2 then Halts
+---+--+--+--+--+---+
! 24!00 01 01 11! Adds 1+1 then Halts
+---+--+--+--+--+---+
! 25!00 01 10 00! Program Immediately Halts
+---+--+--+--+--+---+
! 26!00 01 10 01! Lds Acc, Output Acc, Lds Acc then Halts
+---+--+--+--+--+---+
! 27!00 01 10 10! Output Acc x 2, Lds Acc then Halts
+---+--+--+--+--+---+
! 28!00 01 10 11! Adds 10+1 then Halts
+---+--+--+--+--+---+
! 29!00 01 11 00! Program Immediately Halts
+---+--+--+--+--+---+
! 30!00 01 11 01! Lds Acc, Adds 1+0 then endless loop
+---+--+--+--+--+---+
! 31!00 01 11 10! Output Acc Adds 1+0 then endless loop
+---+--+--+--+--+---+
! 32!00 01 11 11! Adds 11+01 then Halts
+---+--+--+--+--+---+
! 33!00 10 00 00! Program Immediately Halts
+---+--+--+--+--+---+
! 34!00 10 00 01! Lds Acc then Halts
+---+--+--+--+--+---+
! 35!00 10 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
! 36!00 10 00 11! Adds 0+10 then Halts
+---+--+--+--+--+---+
! 37!00 10 01 00! Program Immediately Halts
+---+--+--+--+--+---+
! 38!00 10 01 01! Lds Acc x 2, Output Acc the Halts
+---+--+--+--+--+---+
! 39!00 10 01 10! Output Acc, Lds Acc, Output Acc, then Halts
+---+--+--+--+--+---+
! 40!00 10 01 11! Adds 1+10, then Halts
+---+--+--+--+--+---+
! 41!00 10 10 00! Program Immediately Halts
+---+--+--+--+--+---+
! 42!00 10 10 01! Lds Acc, Output Acc x 2, then Halts
+---+--+--+--+--+---+
! 43!00 10 10 10! Output Acc x 3, then Halts
+---+--+--+--+--+---+
! 44!00 10 10 11! Adds 10+10, then Halts
+---+--+--+--+--+---+
! 45!00 10 11 00! Program Immediately Halts
+---+--+--+--+--+---+
! 46!00 10 11 01! Lds Acc Adds 10+0, then endless loop
+---+--+--+--+--+---+
! 47!00 10 11 10! Output Acc, Adds 10+0, then endless loop
+---+--+--+--+--+---+
! 48!00 10 11 11! Adds 11+10, then Halts
+---+--+--+--+--+---+
! 49!00 11 00 00! Program Immediately Halts
+---+--+--+--+--+---+
! 50!00 11 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
! 51!00 11 00 10! Output Acc, Then Halts
+---+--+--+--+--+---+
! 52!00 11 00 11! Adds 0+11, then Halts
+---+--+--+--+--+---+
! 53!00 11 01 00! Program Immediately Halts
+---+--+--+--+--+---+
! 54!00 11 01 01! Lds Acc x 2, Adds 0+1, Lds acc Adds 0+1.. endless loop
+---+--+--+--+--+---+
! 55!00 11 01 10! Output Acc, Lds Acc, Adds 0+10, Lds Acc.. endless loop
+---+--+--+--+--+---+
! 56!00 11 01 11! Adds 1+11, then Halts
+---+--+--+--+--+---+

Part 2 Haecceitics The aesthetics of totalizable objects.

75

! 57!00 11 10 00! Program Immediately Halts
+---+--+--+--+--+---+
! 58!00 11 10 01! Lds Acc, Output Acc, Adds 0+1,Output Acc, Adds.. endless loop
+---+--+--+--+--+---+
! 59!00 11 10 10! Output Acc x 2, Adds 0+10, Outputs Acc, Adds.. endless loop
+---+--+--+--+--+---+
! 60!00 11 10 11! Adds 10+11, then Halts
+---+--+--+--+--+---+
! 61!00 11 11 00! Program Immediately Halts
+---+--+--+--+--+---+
! 62!00 11 11 01! Lds Acc, Adds 11+0, Lds acc, Adds 11+0.. endless loop
+---+--+--+--+--+---+
! 63!00 11 11 10! Output Acc, Adds 11+0, Outputs Acc, Adds.. endless loop
+---+--+--+--+--+---+
! 64!00 11 11 11! Adds 11+11, then Halts
+---+--+--+--+--+---+
! 65!01 00 00 00! Program Immediately Halts
+---+--+--+--+--+---+
! 66!01 00 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
! 67!01 00 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
! 68!01 00 00 11! Adds 0+0, Lds Acc, Adds 0+0.. endless loop
+---+--+--+--+--+---+
! 69!01 00 01 00! Program Immediately Halts
+---+--+--+--+--+---+
! 70!01 00 01 01! Lds Acc x 2, then Halts
+---+--+--+--+--+---+
! 71!01 00 01 10! Output Acc, Lds Acc, then Halts
+---+--+--+--+--+---+
! 72!01 00 01 11! Adds 1+0, Lds Acc, Adds 1+0.. endless loop
+---+--+--+--+--+---+
! 73!01 00 10 00! Program Immediately Halts
+---+--+--+--+--+---+
! 74!01 00 10 01! Lds Acc, Output Acc, then Halts
+---+--+--+--+--+---+
! 75!01 00 10 10! Output Acc x 2, then Halts
+---+--+--+--+--+---+
! 76!01 00 10 11! Adds 10+0, Lds Acc, ! Adds 10+0.. endless loop
+---+--+--+--+--+---+
! 77!01 00 11 00! Program Immediately Halts
+---+--+--+--+--+---+
! 78!01 00 11 01! Lds Acc, Adds 0+1, Lds Acc, Adds.. endless loop
+---+--+--+--+--+---+
! 79!01 00 11 10! Output Acc, Adds 0+1, Output Acc, Adds.. endless loop
+---+--+--+--+--+---+
! 80!01 00 11 11! Adds 11+0, Lds Acc, Adds 11+0.. endless loop
+---+--+--+--+--+---+
! 81!01 01 00 00! Program Immediately Halts
+---+--+--+--+--+---+
! 82!01 01 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
! 83!01 01 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
! 84!01 01 00 11! Adds 0+1, Lds Acc, Adds 00+1.. endless loop
+---+--+--+--+--+---+
! 85!01 01 01 00! Program Immediately Halts
+---+--+--+--+--+---+
! 86!01 01 01 01! Lds Acc endless loop
+---+--+--+--+--+---+
! 87!01 01 01 10! Output Acc, Lds Acc x 3.. endless loop
+---+--+--+--+--+---+
! 88!01 01 01 11! Adds 1+1, Lds Acc, Adds.. endless loop
+---+--+--+--+--+---+
! 89!01 01 10 00! Program Immediately Halts
+---+--+--+--+--+---+
! 90!01 01 10 01! Lds Acc, Output Acc, Lds Acc x 2.. endless loop
+---+--+--+--+--+---+
! 91!01 01 10 10! Output Acc x 2, Lds Acc x 2.. endless loop

Part 2 Haecceitics The aesthetics of totalizable objects.

76

+---+--+--+--+--+---+
! 92!01 01 10 11! Adds 10+1, Lds Acc, Adds 10+1.. endless loop
+---+--+--+--+--+---+
! 93!01 01 11 00! Program Immediately Halts
+---+--+--+--+--+---+
! 94!01 01 11 01! Lds Acc, Adds 1+1, Lds Acc.. endless loop
+---+--+--+--+--+---+
! 95!01 01 11 10! Output Acc, Adds 1+1, Output Acc.. endless loop
+---+--+--+--+--+---+
! 96!01 01 11 11! Adds 11+1, Lds Acc, Adds 11+1.. endless loop
+---+--+--+--+--+---+
! 97!01 10 00 00! Program Immediately Halts
+---+--+--+--+--+---+
! 98!01 10 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
! 99!01 10 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!100!01 10 00 11! Adds 0+10, Lds Acc, Add 0+10.. endless loop
+---+--+--+--+--+---+
!101!01 10 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!102!01 10 01 01! Lds Acc x 2, Output Acc, Lds Acc.. endless loop
+---+--+--+--+--+---+
!103!01 10 01 10! Output Acc, Lds Acc, Output Acc, Lds Acc.. endless loop
+---+--+--+--+--+---+
!104!01 10 01 11! Adds 1+10, Lds Acc, Adds 1+10.. endless loop
+---+--+--+--+--+---+
!105!01 10 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!106!01 10 10 01! Lds Acc, Output Acc x 2, Lds Acc.. endless loop
+---+--+--+--+--+---+
!107!01 10 10 10! Output Acc x 3, Lds Acc.. endless loop
+---+--+--+--+--+---+
!108!01 10 10 11! Adds 10+10, Lds Acc, Adds 10+10.. endless loop
+---+--+--+--+--+---+
!109!01 10 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!110!01 10 11 01! Lds Acc, Adds 10+1, Lds Acc.. endless loop
+---+--+--+--+--+---+
!111!01 10 11 10! Output Acc, Adds 10+1, Output Acc.. endless loop
+---+--+--+--+--+---+
!112!01 10 11 11! Adds 11+10, Lds Acc, Adds 11+10.. endless loop
+---+--+--+--+--+---+
!113!01 11 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!114!01 11 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
!115!01 11 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!116!01 11 00 11! Adds 0+11, Lds Acc, Adds 0+10.. endless loop
+---+--+--+--+--+---+
!117!01 11 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!118!01 11 01 01! Lds Acc x 2, Adds 1+1, Lds Acc, Adds 1+1.. endless loop
+---+--+--+--+--+---+
!119!01 11 01 10! Output Acc, Lds Acc, Adds 1+10, Lds Acc.. endless loop
+---+--+--+--+--+---+
!120!01 11 01 11! Adds 1+11, Lds Acc, Adds 1+10.. endless loop
+---+--+--+--+--+---+
!121!01 11 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!122!01 11 10 01! Lds Acc, Output Acc, Adds 1+1, Output Acc, Adds.. endless loop
+---+--+--+--+--+---+
!123!01 11 10 10! Output Acc x 2, Adds 1+10, Output Acc, Adds.. endless loop
+---+--+--+--+--+---+
!124!01 11 10 11! Adds 10+11, Lds Acc, Adds 10+10.. endless loop
+---+--+--+--+--+---+
!125!01 11 11 00! Program Immediately Halts
+---+--+--+--+--+---+

Part 2 Haecceitics The aesthetics of totalizable objects.

77

!126!01 11 11 01! Lds Acc, Adds 11+1, Lds Acc, Adds.. endless loop
+---+--+--+--+--+---+
!127!01 11 11 10! Output Acc, Adds 11+11, Output Acc, Output Acc, Adds.. endless
loop
+---+--+--+--+--+---+
!128!01 11 11 11! Adds 11+11, Lds Acc, Adds 11+11.. endless loop
+---+--+--+--+--+---+
!129!10 00 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!130!10 00 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
!131!10 00 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!132!10 00 00 11! Adds 0+0, Output Acc, Adds 0+0.. endless loop
+---+--+--+--+--+---+
!133!10 00 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!134!10 00 01 01! Lds Acc x 2, then Halts
+---+--+--+--+--+---+
!135!10 00 01 10! Output Acc, Lds Acc, then Halts
+---+--+--+--+--+---+
!136!10 00 01 11! Adds 1+0, Output Acc, Adds 1+0.. endless loop
+---+--+--+--+--+---+
!137!10 00 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!138!10 00 10 01! Lds Acc, Output Acc, then Halts
+---+--+--+--+--+---+
!139!10 00 10 10! Output Acc x 2, then Halts
+---+--+--+--+--+---+
!140!10 00 10 11! Add 10+0, Output Acc, Add 10+0.. endless loop
+---+--+--+--+--+---+
!141!10 00 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!142!10 00 11 01! Lds Acc, Add 0+10, Output Acc.. endless loop
+---+--+--+--+--+---+
!143!10 00 11 10! Output Acc, Adds 0+10, Output Acc.. endless loop
+---+--+--+--+--+---+
!144!10 00 11 11! Adds 11+0, Output Acc, Adds 11+0.. endless loop
+---+--+--+--+--+---+
!145!10 01 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!146!10 01 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
!147!10 01 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!148!10 01 00 11! Adds 11+0, Output Acc, Adds 11+0.. endless loop
+---+--+--+--+--+---+
!149!10 01 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!150!10 01 01 01! Lds Acc x 3, Output Acc.. endless loop
+---+--+--+--+--+---+
!151!10 01 01 10! Output Acc, Lds Acc x 2, Output Acc.. endless loop
+---+--+--+--+--+---+
!152!10 01 01 11! Adds 1+1, Output Acc, Adds 1+1.. endless loop
+---+--+--+--+--+---+
!153!10 01 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!154!10 01 10 01! Lds Acc, Output Acc, Lds Acc, Output Acc.. endless loop
+---+--+--+--+--+---+
!155!10 01 10 10! Output Acc x 2, Lds Acc, Output Acc.. endless loop
+---+--+--+--+--+---+
!156!10 01 10 11! Adds 10+1, Output Acc, Adds 10+1.. endless loop
+---+--+--+--+--+---+
!157!10 01 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!158!10 01 11 01! Lds Acc, Adds 1+10, Output Acc.. endless loop
+---+--+--+--+--+---+
!159!10 01 11 10! Output Acc, Adds 1+10, Output Acc.. endless loop
+---+--+--+--+--+---+

Part 2 Haecceitics The aesthetics of totalizable objects.

78

!160!10 01 11 11! Adds 11+1, Output Acc, Adds 11+1.. endless loop
+---+--+--+--+--+---+
!161!10 10 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!162!10 10 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
!163!10 10 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!164!10 10 00 11! Adds 11+0, Output Acc, Adds 11+0.. endless loop
+---+--+--+--+--+---+
!165!10 10 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!166!10 10 01 01! Lds Acc x 2, Output acc x 2.. endless loop
+---+--+--+--+--+---+
!167!10 10 01 10! Output Acc, Lds Acc, Output Acc x2.. endless loop
+---+--+--+--+--+---+
!168!10 10 01 11! Adds 11+0, Output Acc, Adds 11+0.. endless loop
+---+--+--+--+--+---+
!169!10 10 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!170!10 10 10 01! Lds Acc, Output Acc x3.. endless loop
+---+--+--+--+--+---+
!171!10 10 10 10! Output Acc x4.. endless loop
+---+--+--+--+--+---+
!172!10 10 10 11! Adds 10+10, Output Acc, Adds 10+10.. endless loop
+---+--+--+--+--+---+
!173!10 10 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!174!10 10 11 01! Lds Acc, Adds 10+10, Lds Acc, Adds.. endless loop
+---+--+--+--+--+---+
!175!10 10 11 10! Output Acc, Adds 10+10, Output Acc.. endless loop
+---+--+--+--+--+---+
!176!10 10 11 11! Adds 11+10, Output Acc, Adds 11+10.. Output Acc.. endless loop
+---+--+--+--+--+---+
!177!10 11 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!178!10 11 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
!179!10 11 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!180!10 11 00 11! Adds 0+11, Output Acc, Adds 0+11.. endless loop
+---+--+--+--+--+---+
!181!10 11 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!182!10 11 01 01! Lds Acc x 2, Adds 10+1, Lds Acc.. endless loop
+---+--+--+--+--+---+
!183!10 11 01 10! Output Acc, Lds Acc, Adds 10+10, Lds Acc.. endless loop
+---+--+--+--+--+---+
!184!10 11 01 11! Adds 1+11, Output Acc, Adds 1+11.. endless loop
+---+--+--+--+--+---+
!185!10 11 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!186!10 11 10 01! Lds Acc, Output Acc, Adds 10+1, Output Acc.. endless loop
+---+--+--+--+--+---+
!187!10 11 10 10! Output Acc x 2, Adds 10+10, Output Acc.. endless loop
+---+--+--+--+--+---+
!188!10 11 10 11! Adds 10+11, Output Acc, Adds 10+11.. endless loop
+---+--+--+--+--+---+
!189!10 11 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!190!10 11 11 01! Lds Acc, Adds 11+10, Lds Acc.. endless loop
+---+--+--+--+--+---+
!191!10 11 11 10! Output Acc, Adds 11+10, Output Acc.. endless loop
+---+--+--+--+--+---+
!192!10 11 11 11! Adds 11+11, Output Acc, Adds 11+11.. endless loop
+---+--+--+--+--+---+
!193!11 00 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!194!11 00 00 01! Lds Acc, then Halts

Part 2 Haecceitics The aesthetics of totalizable objects.

79

+---+--+--+--+--+---+
!195!11 00 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!196!11 00 00 11! Adds 0+0, Adds 11+0, then Halts (2 passes through code)
+---+--+--+--+--+---+
!197!11 00 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!198!11 00 01 01! Lds Acc x 2, then Halts
+---+--+--+--+--+---+
!199!11 00 01 10! Output Acc, Lds Acc, then Halts
+---+--+--+--+--+---+
!200!11 00 01 11! Adds 1+0, Adds, Adds 11+1 then Halts (2 passes through code)
+---+--+--+--+--+---+
!201!11 00 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!202!11 00 10 01! Lds Acc, Output Acc, then Halts
+---+--+--+--+--+---+
!203!11 00 10 10! Output Acc x 2, then Halts
+---+--+--+--+--+---+
!204!11 00 10 11! Adds 10+0, Adds 11+10, then Halts (2 passes through code)
+---+--+--+--+--+---+
!205!11 00 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!206!11 00 11 01! Lds Acc, Adds 0+11, Lds Acc, Adds 0+11.. endless loop
+---+--+--+--+--+---+
!207!11 00 11 10! Output Acc, 0+11, Output Acc, Adds 0+11.. endless loop
+---+--+--+--+--+---+
!208!11 00 11 11! Adds 11+0, Adds 11+11, then Halts (2 passes through code)
+---+--+--+--+--+---+
!209!11 01 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!210!11 01 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
!211!11 01 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!212!11 01 00 11! Adds 0+1, Adds 11+0, Lds Acc, Adds 11+0 .. endless loop
+---+--+--+--+--+---+
!213!11 01 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!214!11 01 01 01! Lds Acc x 3, Adds 1+1, Lds Acc, Adds 1+1.. endless loop
+---+--+--+--+--+---+
!215!11 01 01 10! Output Acc, Lds Acc x 2, Adds 10+1, Lds Acc, Adds 10+1..
endless loop
+---+--+--+--+--+---+
!216!11 01 01 11! Adds 1+1, Adds 11+1, Lds Acc, Adds 11+1.. endless loop
+---+--+--+--+--+---+
!217!11 01 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!218!11 01 10 01! Lds Acc, Output Acc, Adds 1+10, Lds Acc, Adds 1+10.. endless
loop
+---+--+--+--+--+---+
!219!11 01 10 10! Output Acc x 2, Lds Acc, Adds 10+10.. Lds Acc endless loop
+---+--+--+--+--+---+
!220!11 01 10 11! Adds 10+1, Adds 11+10, Lds Acc.. endless loop
+---+--+--+--+--+---+
!221!11 01 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!222!11 01 11 01! Lds Acc, Adds 1+11, Lds Acc, Adds 1+11.. endless loop
+---+--+--+--+--+---+
!223!11 01 11 10! Output Acc, Adds 1+11, Output Acc, Adds 1+11.. endless loop
+---+--+--+--+--+---+
!224!11 01 11 11! Adds 11+1, Adds 11+11, Lds Acc.. endless loop
+---+--+--+--+--+---+
!225!11 10 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!226!11 10 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
!227!11 10 00 10! Output Acc, then Halts
+---+--+--+--+--+---+

Part 2 Haecceitics The aesthetics of totalizable objects.

80

!228!11 10 00 11! Adds 0+10, Adds 11+0, Output Acc.. endless loop
+---+--+--+--+--+---+
!229!11 10 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!230!11 10 01 01! Lds Acc x 2, Output Acc, Adds 1+1, Output Acc.. endless loop
+---+--+--+--+--+---+
!231!11 10 01 10! Output Acc, Lds Acc, Adds 10+1, Output Acc.. endless loop
+---+--+--+--+--+---+
!232!11 10 01 11! Adds 1+10, Adds 11+1, Output Acc.. endless loop
+---+--+--+--+--+---+
!233!11 10 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!234!11 10 10 01! Lds Acc, Output Acc x 2, Adds 01+10.. endless loop
+---+--+--+--+--+---+
!235!11 10 10 10! Output Acc x 3, Adds 10+10, Output Acc.. endless loop
+---+--+--+--+--+---+
!236!11 10 10 11! Adds 10+10, Adds 11+10, Output Acc.. endless loop
+---+--+--+--+--+---+
!237!11 10 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!238!11 10 11 01! Lds Acc, Adds 10 + 11, Lds Acc, Adds 10 + 11.. endless loop
+---+--+--+--+--+---+
!239!11 10 11 10! Output Acc, Adds 10 + 11, Output Acc, Adds 10 + 11.. endless
loop
+---+--+--+--+--+---+
!240!11 10 11 11! Adds 11+10, Adds 11+11, Output Acc.. endless loop
+---+--+--+--+--+---+
!241!11 11 00 00! Program Immediately Halts
+---+--+--+--+--+---+
!242!11 11 00 01! Lds Acc, then Halts
+---+--+--+--+--+---+
!243!11 11 00 10! Output Acc, then Halts
+---+--+--+--+--+---+
!244!11 11 00 11! Adds 0+11, Adds 11+0, Adds 11+11 then Halts (2 passes through
code)
+---+--+--+--+--+---+
!245!11 11 01 00! Program Immediately Halts
+---+--+--+--+--+---+
!246!11 11 01 01! Lds Acc x 2, Adds 11 + 01, Lds acc, Adds 11 + 01.. endless
loop
+---+--+--+--+--+---+
!247!11 11 01 10! Output Acc, Lds Acc, Adds 11 + 10, Lds Acc, Adds 11 + 1..
endless loop
+---+--+--+--+--+---+
!248!11 11 01 11! Adds 1+11, Adds 11+11, Lds Acc, Adds 11+11.. endless loop
+---+--+--+--+--+---+
!249!11 11 10 00! Program Immediately Halts
+---+--+--+--+--+---+
!250!11 11 10 01! Lds Acc, Output Acc, Adds 11+1, Output Acc, Adds 11+1..
endless loop
+---+--+--+--+--+---+
!251!11 11 10 10! Output Acc x 2, Adds 11+10, Output Acc, Adds 11+10.. endless
loop
+---+--+--+--+--+---+
!252!11 11 10 11! Adds 10+11, Adds 11+10, Adds 11+11, Output Acc.. endless loop
+---+--+--+--+--+---+
!253!11 11 11 00! Program Immediately Halts
+---+--+--+--+--+---+
!254!11 11 11 01! Lds Acc, Adds 11+11, Lds Acc, Adds 11+11.. endless loop
+---+--+--+--+--+---+
!255!11 11 11 10! Output Acc, Adds 11+11, Output Acc, Adds 11+11.. endless loop
+---+--+--+--+--+---+
!256!11 11 11 11! Adds 11+11, Adds 11+11, Adds 11+11.. endless loop
+---+--+--+--+--+---+

Part 2 Haecceitics The aesthetics of totalizable objects.

81

Each of these programs with the total set of 256 2 bit programs can be considered
as a fully ‘knowable’ / ‘experienceable’ object. Within the class of the 256 are
shared characteristics, halting non halting for instance. Some programs exhibit
‘reuse’ of data as instructions. Others exhibit symmetries of Input / process etc. It
is possible therefore not only to know or experience these objects, it would and is
also possible to construct further classifications. For instance each program could
be thought of as a ‘species’ within the ‘Class’. Halting / non halting could be a
‘Order’, and Families and Genus’ further identified. The origin and cause of these
taxonomic properties is also interesting. Obviously these taxonomies are derived
not from any developmental process but from a set which is apriori in existence
given the address space.

Philosophically these objects are fully knowable in themselves. And so it is
possible, or even preferable to not use a critical / epistemological approach, (Post
Kantian), but apply a dogmatic metaphysics of pre-Kantian Scholasticism.

The essence of these objects is knowable – the Haecceity, the particular ‘thisness’
of a definite program (object), and its quiddity or hypokeimenon, those properties
it shares with others in the set. These object’s haecceity is clear in that they are
‘individuals’ – no two are identical, yet they share commonalities. In such a simple
set, a 2 bit universe, these distinctions are obvious, trivial, yet real. What causes
both an object’s “thisness” from its quiddity are given without recourse to
epistemology, as they are given apriori any thought. Their ontology is also apriori
given. Here a philosophic objection might be that these are not (philosophically)
appropriate objects. They may well not be appropriate to ‘real world’ philosophy
any more than they are so naive as to not be ‘appropriate’ to ‘real world’ computer
science. Yet as a set of ‘aesthetic’ objects, a critique- knowledge –
phenomenology, presentation .. in these terms, can be made – ‘aesthetically’, or
rather than a critique a dogmatic metaphysics can be made.

“Locke theorised that when all sensible properties were abstracted away from an object,

such as its colour, weight, density or taste, there would still be something left to which the

properties had adhered— something which allowed the object to exist independently of
the sensible properties that it manifested in the beholder. Locke saw this ontological

ingredient as necessary if we are to be able to consider objects as existing independently

of our own minds. The material substratum proved a difficult idea for Locke as by its very
nature its existence could not be directly proved in the manner endorsed by empiricists

(i.e., proof by exhibition in experience). Nevertheless, he believed that the philosophical

reasons for it were strong enough for its existence to be considered proved.

The existence of the substratum was denied by Berkeley. In his Three Dialogues Between

Hylas and Philonous, Berkeley maintained that an object consists of nothing more than
those sensible properties (or possible sensible properties) that the object manifests, and

that those sensible properties only exist so long as the act of perceiving them does.”

(http://en.wikipedia.org/w/index.php?title=Hypokeimenon&oldid=509912150)

It appears that whilst these objects can be empirically experienced, their ontology,
and their Haecceity, quiddity, hypokeimenon, exist apriori.

Part 2 Haecceitics The aesthetics of totalizable objects.

82

If these ‘universes’ are to be considered as metaphors of larger universes (our
own included) as any experiential knowledge of these larger universes for us is
impossible, by virtue of scale, such access to these must become speculative,
contingent, and provisional, even given the idea of the limited universes
metaphorical use. Even a 3 bit universe is fairly difficult for us to know
experientially due to the limitations of time, so such larger universes require
‘speculation’ – universes less than three bits do not.

A Dogmatic Metaphysics, for us, now seems possible in a 2 bit universe, (an odd
feeling being able to think in a pre-Kantian way).. even if these objects are trivial
and of no direct consequence or use in our everyday lives in larger universes,
they represent a play of 2 bit characters, and as such we can watch their totality of
performances. This offers a ground for doing a metaphysics which echoes
Heidegger’s notion of cybernetics – albeit very naive cybernetics allowing, (he
says ‘replacing’) metaphysics.

Part 2 Haecceitics The aesthetics of totalizable objects.

83

Notably this instruction set does not use input or calculation which is then placed
in memory. Input of data (via an I/O device) though not ‘uncertain’ will if stored in
memory effectively change the program as it runs. This simple instruction set
does not do this so its determinacy is easier to see. However some programs
exhibit pseudo morphing – in that code which is used as data, is on a second or
third loop used as an instruction. In these cases the Halt instruction terminates
the program on the second and third loops through the address space.

196 11000011 loop ctr 1 Halts___ Executes Data
200 11000111 loop ctr 1 Halts___ Executes Data
204 11001011 loop ctr 1 Halts___ Executes Data
208 11001111 loop ctr 1 Halts___ Executes Data
244 11110011 loop ctr 2 Halts___ Executes Data

Such techniques are not uncommon in low level programming, though here there
is no ‘programmer’ – it is a feature of a selection of the totality. In our first example
of a simple 3 bit CPU input could alter program execution dynamically, however it
would only alter it to one of the (determined) 16 million states.

At each instruction where an input occurs in the 2 bit CPU, there will be 4 possible
inputs, 00, 01, 10, 11. Where two inputs occur 16 possible inputs, three inputs –
64 and four – 256. These represent additional states, however they do not alter
memory, so the given outcomes above remain true and fixed. If we map the
registers as well as memory we have another 12 memory locations. The PC,
Control Unit, ACC in / out, The I/O reg and 2 flags. 2

12
 gives all of these states.

4096 states. If we map all of these with memory we have 2
20
 or 1,048,576 states.

We might want to then consider the control lines from the Control unit and its
gates, these are not shown in our theoretical model but would need to be
implemented in an actual physical device. They are emulated programmatically in
the emulator.

Over a million states would be time consuming to manually dry run but in principle
these could be listed via running the emulator with all 256 programs with all
possible inputs where they occur, and printing these out. In fact the possible
states using this instruction set is less than 2

20
 as there are 256 programs there

will be 256 states for the registers with the exception of the I/O register which will
have 4, 16, 64 or 256 states depending on how many Input instructions occur in a
given program. There are 512 in total so a maximum of 10,000 states for this
instruction set.

Part 2 Haecceitics The aesthetics of totalizable objects.

84

Total States for all programs with ALL I/O operations

Program i/o # Program i/o # Program i/o # Program i/o #
OO OO OO OO 0 1
OO OO OO Ol 1 4
OO OO OO lO 1 4
OO OO OO ll 0 1
OO OO Ol OO 1 4
OO OO Ol Ol 2 16
OO OO Ol lO 2 16
OO OO Ol ll 1 4
OO OO lO OO 1 4
OO OO lO Ol 2 16
OO OO lO lO 2 16
OO OO lO ll 1 4
OO OO ll OO 0 1
OO OO ll Ol 1 4
OO OO ll lO 1 4
OO OO ll ll 0 1
OO Ol OO OO 1 4
OO Ol OO Ol 2 16
OO Ol OO lO 2 16
OO Ol OO ll 1 4
OO Ol Ol OO 2 16
OO Ol Ol Ol 3 64
OO Ol Ol lO 3 64
OO Ol Ol ll 2 16
OO Ol lO OO 2 16
OO Ol lO Ol 3 64
OO Ol lO lO 3 64
OO Ol lO ll 2 16
OO Ol ll OO 1 4
OO Ol ll Ol 2 16
OO Ol ll lO 2 16
OO Ol ll ll 1 4
OO lO OO OO 1 4
OO lO OO Ol 2 16
OO lO OO lO 2 16
OO lO OO ll 1 4
OO lO Ol OO 2 16
OO lO Ol Ol 3 64
OO lO Ol lO 3 64
OO lO Ol ll 2 16
OO lO lO OO 2 16
OO lO lO Ol 3 64
OO lO lO lO 3 64
OO lO lO ll 2 16
OO lO ll OO 1 4
OO lO ll Ol 2 16
OO lO ll lO 2 16
OO lO ll ll 1 4
OO ll OO OO 0 1
OO ll OO Ol 1 4
OO ll OO lO 1 4
OO ll OO ll 0 1
OO ll Ol OO 1 4
OO ll Ol Ol 2 16
OO ll Ol lO 2 16
OO ll Ol ll 1 4
OO ll lO OO 1 4
OO ll lO Ol 2 16
OO ll lO lO 2 16
OO ll lO ll 1 4
OO ll ll OO 0 1
OO ll ll Ol 1 4
OO ll ll lO 1 4
OO ll ll ll 0 1

Ol OO OO OO 1 4
Ol OO OO Ol 2 16
Ol OO OO lO 2 16
Ol OO OO ll 1 4
Ol OO Ol OO 2 16
Ol OO Ol Ol 3 64
Ol OO Ol lO 3 64
Ol OO Ol ll 2 16
Ol OO lO OO 2 16
Ol OO lO Ol 3 64
Ol OO lO lO 3 64
Ol OO lO ll 2 16
Ol OO ll OO 1 4
Ol OO ll Ol 2 16
Ol OO ll lO 2 16
Ol OO ll ll 1 4
Ol Ol OO OO 2 16
Ol Ol OO Ol 3 64
Ol Ol OO lO 3 64
Ol Ol OO ll 2 16
Ol Ol Ol OO 3 64
Ol Ol Ol Ol 4 256
Ol Ol Ol lO 4 256
Ol Ol Ol ll 3 64
Ol Ol lO OO 3 64
Ol Ol lO Ol 4 256
Ol Ol lO lO 4 256
Ol Ol lO ll 3 64
Ol Ol ll OO 2 16
Ol Ol ll Ol 3 64
Ol Ol ll lO 3 64
Ol Ol ll ll 2 16
Ol lO OO OO 2 16
Ol lO OO Ol 3 64
Ol lO OO lO 3 64
Ol lO OO ll 2 16
Ol lO Ol OO 3 64
Ol lO Ol Ol 4 256
Ol lO Ol lO 4 256
Ol lO Ol ll 3 64
Ol lO lO OO 3 64
Ol lO lO Ol 4 256
Ol lO lO lO 4 256
Ol lO lO ll 3 64
Ol lO ll OO 2 16
Ol lO ll Ol 3 64
Ol lO ll lO 3 64
Ol lO ll ll 2 16
Ol ll OO OO 1 4
Ol ll OO Ol 2 16
Ol ll OO lO 2 16
Ol ll OO ll 1 4
Ol ll Ol OO 2 16
Ol ll Ol Ol 3 64
Ol ll Ol lO 3 64
Ol ll Ol ll 2 16
Ol ll lO OO 2 16
Ol ll lO Ol 3 64
Ol ll lO lO 3 64
Ol ll lO ll 2 16
Ol ll ll OO 1 4
Ol ll ll Ol 2 16
Ol ll ll lO 2 16
Ol ll ll ll 1 4

lO OO OO OO 1 4
lO OO OO Ol 2 16
lO OO OO lO 2 16
lO OO OO ll 1 4
lO OO Ol OO 2 16
lO OO Ol Ol 3 64
lO OO Ol lO 3 64
lO OO Ol ll 2 16
lO OO lO OO 2 16
lO OO lO Ol 3 64
lO OO lO lO 3 64
lO OO lO ll 2 16
lO OO ll OO 1 4
lO OO ll Ol 2 16
lO OO ll lO 2 16
lO OO ll ll 1 4
lO Ol OO OO 2 16
lO Ol OO Ol 3 64
lO Ol OO lO 3 64
lO Ol OO ll 2 16
lO Ol Ol OO 3 64
lO Ol Ol Ol 4 256
lO Ol Ol lO 4 256
lO Ol Ol ll 3 64
lO Ol lO OO 3 64
lO Ol lO Ol 4 256
lO Ol lO lO 4 256
lO Ol lO ll 3 64
lO Ol ll OO 2 16
lO Ol ll Ol 3 64
lO Ol ll lO 3 64
lO Ol ll ll 2 16
lO lO OO OO 2 16
lO lO OO Ol 3 64
lO lO OO lO 3 64
lO lO OO ll 2 16
lO lO Ol OO 3 64
lO lO Ol Ol 4 256
lO lO Ol lO 4 256
lO lO Ol ll 3 64
lO lO lO OO 3 64
lO lO lO Ol 4 256
lO lO lO lO 4 256
lO lO lO ll 3 64
lO lO ll OO 2 16
lO lO ll Ol 3 64
lO lO ll lO 3 64
lO lO ll ll 2 16
lO ll OO OO 1 4
lO ll OO Ol 2 16
lO ll OO lO 2 16
lO ll OO ll 1 4
lO ll Ol OO 2 16
lO ll Ol Ol 3 64
lO ll Ol lO 3 64
lO ll Ol ll 2 16
lO ll lO OO 2 16
lO ll lO Ol 3 64
lO ll lO lO 3 64
lO ll lO ll 2 16
lO ll ll OO 1 4
lO ll ll Ol 2 16
lO ll ll lO 2 16
lO ll ll ll 1 4

ll OO OO OO 0 1
ll OO OO Ol 1 4
ll OO OO lO 1 4
ll OO OO ll 0 1
ll OO Ol OO 1 4
ll OO Ol Ol 2 16
ll OO Ol lO 2 16
ll OO Ol ll 1 4
ll OO lO OO 1 4
ll OO lO Ol 2 16
ll OO lO lO 2 16
ll OO lO ll 1 4
ll OO ll OO 0 1
ll OO ll Ol 1 4
ll OO ll lO 1 4
ll OO ll ll 0 1
ll Ol OO OO 1 4
ll Ol OO Ol 2 16
ll Ol OO lO 2 16
ll Ol OO ll 1 4
ll Ol Ol OO 2 16
ll Ol Ol Ol 3 64
ll Ol Ol lO 3 64
ll Ol Ol ll 2 16
ll Ol lO OO 2 16
ll Ol lO Ol 3 64
ll Ol lO lO 3 64
ll Ol lO ll 2 16
ll Ol ll OO 1 4
ll Ol ll Ol 2 16
ll Ol ll lO 2 16
ll Ol ll ll 1 4
ll lO OO OO 1 4
ll lO OO Ol 2 16
ll lO OO lO 2 16
ll lO OO ll 1 4
ll lO Ol OO 2 16
ll lO Ol Ol 3 64
ll lO Ol lO 3 64
ll lO Ol ll 2 16
ll lO lO OO 2 16
ll lO lO Ol 3 64
ll lO lO lO 3 64
ll lO lO ll 2 16
ll lO ll OO 1 4
ll lO ll Ol 2 16
ll lO ll lO 2 16
ll lO ll ll 1 4
ll ll OO OO 0 1
ll ll OO Ol 1 4
ll ll OO lO 1 4
ll ll OO ll 0 1
ll ll Ol OO 1 4
ll ll Ol Ol 2 16
ll ll Ol lO 2 16
ll ll Ol ll 1 4
ll ll lO OO 1 4
ll ll lO Ol 2 16
ll ll lO lO 2 16
ll ll lO ll 1 4
ll ll ll OO 0 1
ll ll ll Ol 1 4
ll ll ll lO 1 4
ll ll ll ll 0 1

Total States = 10,000

Part 2 Haecceitics The aesthetics of totalizable objects.

85

From examining the Set of total programs, algorithms can be built for analysis of
outcomes. As above, any program which begins with a 00 halts. Any which
doesn’t begin with an ADD but then has a 00 in the second location will halt.
Loops, where the program will never halt can be detected when two passes
through memory occur which are identical. i.e. the program counter resets to zero
on overflow, and a pass through memory does not encounter a halt instruction.

Here is an analysis of programs by a simple program which does not execute all
statements but detects Halts.

 1 00000000 loop ctr 0 Halts
 2 00000001 loop ctr 0 Halts
 3 00000010 loop ctr 0 Halts
 4 00000011 loop ctr 0 Halts
 5 00000100 loop ctr 0 Halts
 6 00000101 loop ctr 0 Halts
 7 00000110 loop ctr 0 Halts
 8 00000111 loop ctr 0 Halts
 9 00001000 loop ctr 0 Halts
 10 00001001 loop ctr 0 Halts
 11 00001010 loop ctr 0 Halts
 12 00001011 loop ctr 0 Halts
 13 00001100 loop ctr 0 Halts
 14 00001101 loop ctr 5 Loops *
 15 00001110 loop ctr 5 Loops *
 16 00001111 loop ctr 0 Halts
 17 00010000 loop ctr 0 Halts
 18 00010001 loop ctr 0 Halts
 19 00010010 loop ctr 0 Halts
 20 00010011 loop ctr 0 Halts
 21 00010100 loop ctr 0 Halts
 22 00010101 loop ctr 0 Halts
 23 00010110 loop ctr 0 Halts
 24 00010111 loop ctr 0 Halts
 25 00011000 loop ctr 0 Halts
 26 00011001 loop ctr 0 Halts
 27 00011010 loop ctr 0 Halts
 28 00011011 loop ctr 0 Halts
 29 00011100 loop ctr 0 Halts
 30 00011101 loop ctr 5 Loops *
 31 00011110 loop ctr 5 Loops *
 32 00011111 loop ctr 0 Halts
 33 00100000 loop ctr 0 Halts
 34 00100001 loop ctr 0 Halts
 35 00100010 loop ctr 0 Halts
 36 00100011 loop ctr 0 Halts
 37 00100100 loop ctr 0 Halts
 38 00100101 loop ctr 0 Halts
 39 00100110 loop ctr 0 Halts
 40 00100111 loop ctr 0 Halts
 41 00101000 loop ctr 0 Halts
 42 00101001 loop ctr 0 Halts
 43 00101010 loop ctr 0 Halts
 44 00101011 loop ctr 0 Halts
 45 00101100 loop ctr 0 Halts
 46 00101101 loop ctr 5 Loops *
 47 00101110 loop ctr 5 Loops *
 48 00101111 loop ctr 0 Halts
 49 00110000 loop ctr 0 Halts
 50 00110001 loop ctr 0 Halts
 51 00110010 loop ctr 0 Halts
 52 00110011 loop ctr 0 Halts
 53 00110100 loop ctr 0 Halts
 54 00110101 loop ctr 5 Loops *
 55 00110110 loop ctr 5 Loops *

Part 2 Haecceitics The aesthetics of totalizable objects.

86

 56 00110111 loop ctr 0 Halts
 57 00111000 loop ctr 0 Halts
 58 00111001 loop ctr 5 Loops *
 59 00111010 loop ctr 5 Loops *
 60 00111011 loop ctr 0 Halts
 61 00111100 loop ctr 0 Halts
 62 00111101 loop ctr 5 Loops *
 63 00111110 loop ctr 5 Loops *
 64 00111111 loop ctr 0 Halts
 65 01000000 loop ctr 0 Halts
 66 01000001 loop ctr 0 Halts
 67 01000010 loop ctr 0 Halts
 68 01000011 loop ctr 5 Loops *
 69 01000100 loop ctr 0 Halts
 70 01000101 loop ctr 0 Halts
 71 01000110 loop ctr 0 Halts
 72 01000111 loop ctr 5 Loops *
 73 01001000 loop ctr 0 Halts
 74 01001001 loop ctr 0 Halts
 75 01001010 loop ctr 0 Halts
 76 01001011 loop ctr 5 Loops *
 77 01001100 loop ctr 0 Halts
 78 01001101 loop ctr 5 Loops *
 79 01001110 loop ctr 5 Loops *
 80 01001111 loop ctr 5 Loops *
 81 01010000 loop ctr 0 Halts
 82 01010001 loop ctr 0 Halts
 83 01010010 loop ctr 0 Halts
 84 01010011 loop ctr 5 Loops *
 85 01010100 loop ctr 0 Halts
 86 01010101 loop ctr 5 Loops *
 87 01010110 loop ctr 5 Loops *
 88 01010111 loop ctr 5 Loops *
 89 01011000 loop ctr 0 Halts
 90 01011001 loop ctr 5 Loops *
 91 01011010 loop ctr 5 Loops *
 92 01011011 loop ctr 5 Loops *
 93 01011100 loop ctr 0 Halts
 94 01011101 loop ctr 5 Loops *
 95 01011110 loop ctr 5 Loops *
 96 01011111 loop ctr 5 Loops *
 97 01100000 loop ctr 0 Halts
 98 01100001 loop ctr 0 Halts
 99 01100010 loop ctr 0 Halts
 100 01100011 loop ctr 5 Loops *
 101 01100100 loop ctr 0 Halts
 102 01100101 loop ctr 5 Loops *
 103 01100110 loop ctr 5 Loops *
 104 01100111 loop ctr 5 Loops *
 105 01101000 loop ctr 0 Halts
 106 01101001 loop ctr 5 Loops *
 107 01101010 loop ctr 5 Loops *
 108 01101011 loop ctr 5 Loops *
 109 01101100 loop ctr 0 Halts
 110 01101101 loop ctr 5 Loops *
 111 01101110 loop ctr 5 Loops *
 112 01101111 loop ctr 5 Loops *
 113 01110000 loop ctr 0 Halts
 114 01110001 loop ctr 0 Halts
 115 01110010 loop ctr 0 Halts
 116 01110011 loop ctr 5 Loops *
 117 01110100 loop ctr 0 Halts
 118 01110101 loop ctr 5 Loops *
 119 01110110 loop ctr 5 Loops *
 120 01110111 loop ctr 5 Loops *
 121 01111000 loop ctr 0 Halts
 122 01111001 loop ctr 5 Loops *
 123 01111010 loop ctr 5 Loops *
 124 01111011 loop ctr 5 Loops *

Part 2 Haecceitics The aesthetics of totalizable objects.

87

 125 01111100 loop ctr 0 Halts
 126 01111101 loop ctr 5 Loops *
 127 01111110 loop ctr 5 Loops *
 128 01111111 loop ctr 5 Loops *
 129 10000000 loop ctr 0 Halts
 130 10000001 loop ctr 0 Halts
 131 10000010 loop ctr 0 Halts
 132 10000011 loop ctr 5 Loops *
 133 10000100 loop ctr 0 Halts
 134 10000101 loop ctr 0 Halts
 135 10000110 loop ctr 0 Halts
 136 10000111 loop ctr 5 Loops *
 137 10001000 loop ctr 0 Halts
 138 10001001 loop ctr 0 Halts
 139 10001010 loop ctr 0 Halts
 140 10001011 loop ctr 5 Loops *
 141 10001100 loop ctr 0 Halts
 142 10001101 loop ctr 5 Loops *
 143 10001110 loop ctr 5 Loops *
 144 10001111 loop ctr 5 Loops *
 145 10010000 loop ctr 0 Halts
 146 10010001 loop ctr 0 Halts
 147 10010010 loop ctr 0 Halts
 148 10010011 loop ctr 5 Loops *
 149 10010100 loop ctr 0 Halts
 150 10010101 loop ctr 5 Loops *
 151 10010110 loop ctr 5 Loops *
 152 10010111 loop ctr 5 Loops *
 153 10011000 loop ctr 0 Halts
 154 10011001 loop ctr 5 Loops *
 155 10011010 loop ctr 5 Loops *
 156 10011011 loop ctr 5 Loops *
 157 10011100 loop ctr 0 Halts
 158 10011101 loop ctr 5 Loops *
 159 10011110 loop ctr 5 Loops *
 160 10011111 loop ctr 5 Loops *
 161 10100000 loop ctr 0 Halts
 162 10100001 loop ctr 0 Halts
 163 10100010 loop ctr 0 Halts
 164 10100011 loop ctr 5 Loops *
 165 10100100 loop ctr 0 Halts
 166 10100101 loop ctr 5 Loops *
 167 10100110 loop ctr 5 Loops *
 168 10100111 loop ctr 5 Loops *
 169 10101000 loop ctr 0 Halts
 170 10101001 loop ctr 5 Loops *
 171 10101010 loop ctr 5 Loops *
 172 10101011 loop ctr 5 Loops *
 173 10101100 loop ctr 0 Halts
 174 10101101 loop ctr 5 Loops *
 175 10101110 loop ctr 5 Loops *
 176 10101111 loop ctr 5 Loops *
 177 10110000 loop ctr 0 Halts
 178 10110001 loop ctr 0 Halts
 179 10110010 loop ctr 0 Halts
 180 10110011 loop ctr 5 Loops *
 181 10110100 loop ctr 0 Halts
 182 10110101 loop ctr 5 Loops *
 183 10110110 loop ctr 5 Loops *
 184 10110111 loop ctr 5 Loops *
 185 10111000 loop ctr 0 Halts
 186 10111001 loop ctr 5 Loops *
 187 10111010 loop ctr 5 Loops *
 188 10111011 loop ctr 5 Loops *
 189 10111100 loop ctr 0 Halts
 190 10111101 loop ctr 5 Loops *
 191 10111110 loop ctr 5 Loops *
 192 10111111 loop ctr 5 Loops *
 193 11000000 loop ctr 0 Halts

Part 2 Haecceitics The aesthetics of totalizable objects.

88

 194 11000001 loop ctr 0 Halts
 195 11000010 loop ctr 0 Halts
 196 11000011 loop ctr 1 Halts___ Executes Data
 197 11000100 loop ctr 0 Halts
 198 11000101 loop ctr 0 Halts
 199 11000110 loop ctr 0 Halts
 200 11000111 loop ctr 1 Halts___ Executes Data
 201 11001000 loop ctr 0 Halts
 202 11001001 loop ctr 0 Halts
 203 11001010 loop ctr 0 Halts
 204 11001011 loop ctr 1 Halts___ Executes Data
 205 11001100 loop ctr 0 Halts
 206 11001101 loop ctr 5 Loops *
 207 11001110 loop ctr 5 Loops *
 208 11001111 loop ctr 1 Halts___ Executes Data
 209 11010000 loop ctr 0 Halts
 210 11010001 loop ctr 0 Halts
 211 11010010 loop ctr 0 Halts
 212 11010011 loop ctr 5 Loops *
 213 11010100 loop ctr 0 Halts
 214 11010101 loop ctr 5 Loops *
 215 11010110 loop ctr 5 Loops *
 216 11010111 loop ctr 5 Loops *
 217 11011000 loop ctr 0 Halts
 218 11011001 loop ctr 5 Loops *
 219 11011010 loop ctr 5 Loops *
 220 11011011 loop ctr 5 Loops *
 221 11011100 loop ctr 0 Halts
 222 11011101 loop ctr 5 Loops *
 223 11011110 loop ctr 5 Loops *
 224 11011111 loop ctr 5 Loops *
 225 11100000 loop ctr 0 Halts
 226 11100001 loop ctr 0 Halts
 227 11100010 loop ctr 0 Halts
 228 11100011 loop ctr 5 Loops *
 229 11100100 loop ctr 0 Halts
 230 11100101 loop ctr 5 Loops *
 231 11100110 loop ctr 5 Loops *
 232 11100111 loop ctr 5 Loops *
 233 11101000 loop ctr 0 Halts
 234 11101001 loop ctr 5 Loops *
 235 11101010 loop ctr 5 Loops *
 236 11101011 loop ctr 5 Loops *
 237 11101100 loop ctr 0 Halts
 238 11101101 loop ctr 5 Loops *
 239 11101110 loop ctr 5 Loops *
 240 11101111 loop ctr 5 Loops *
 241 11110000 loop ctr 0 Halts
 242 11110001 loop ctr 0 Halts
 243 11110010 loop ctr 0 Halts
 244 11110011 loop ctr 2 Halts___ Executes Data
 245 11110100 loop ctr 0 Halts
 246 11110101 loop ctr 5 Loops *
 247 11110110 loop ctr 5 Loops *
 248 11110111 loop ctr 5 Loops *
 249 11111000 loop ctr 0 Halts
 250 11111001 loop ctr 5 Loops *
 251 11111010 loop ctr 5 Loops *
 252 11111011 loop ctr 5 Loops *
 253 11111100 loop ctr 0 Halts
 254 11111101 loop ctr 5 Loops *
 255 11111110 loop ctr 5 Loops *
 256 11111111 loop ctr 5 Loops *

Part 2 Haecceitics The aesthetics of totalizable objects.

89

Distinguishing halting from non-halting programs algorithmically seems odd as
from the above a computer program can be written (and was) which would be
able to distinguish halting programs from non-halting programs. This violates the
limitation given in the Turing Halting Problem. Therefore this CPU is not a Turing
Machine, for if it were it would violate Turning’s proof as well as others – Gödel et
al?.

This highlights a problem with generalizations about decidability and
incompleteness. (especially in the Arts) Such generalizations are not true. It is
possible to make systems which are completely decidable, though perhaps not
using higher mathematics, or languages with complex syntax? However the
important point here is not to confuse or conflate un decidability (in advance of an
action) with uncertainty as to what alternatives are possible, the outcomes are not
uncertain but fixed and knowable. Our objects here, certainly the very simple 2 bit
CPU are humanly determinable.

It appears in this case the CPU is predictable because it does not test an input of
the kind – “Halt if input is true”. A program with such an instruction is un decidable
until it runs and acquires a definite input. However its possible states given the
inputs can be precisely known. Its only by linking it to something which is
indeterminate that indeterminacy is generated, though again this will be in not
knowing which of a fixed set of states will occur. It is not a generator of some
absolute scepticism. (There is a danger in generalizing mathematical and
scientific statements.) An un decidability here (of the halting problem?) is linked
to the fact that such (Turing) Machines are linked in some way so that the
‘outside’ world affects their processing. That would be a source of un decidability.
However its possible to construct objects which are not un decidable, both in
theory and practice.

It is possible to make ‘knowable’ objects and these can be fully known – therefore
known both logically and aesthetically. As things in themselves. Given even very
simple instruction sets many of these objects can be constructed. That they
exhibit this determinacy may make them for many aesthetically dull and trivial.
They lack the “allure” of Harman’s objects, they lack any ‘poetry’ if poetry is to be
considered as something non-mundane.
(yet for some poets mundanity is not a poetic exclusion. i.e. Conceptual poetry
http://www.poets.org/viewmedia.php/prmMID/22097)

The status of these programs in such a limited ‘universe’ may be difficult to define
with regard to ‘science’ and ‘philosophy’, in not being scientific, (computer
science). Or as ‘art’, appearing naively scientific/mechanical, and not having an
‘optical’ aesthetic. However there is nothing novel in these phenomena, in their
having a potential to be objects with regards to “Art”. Duchamp’s ready-mades
are naïve ‘mechanical’ objects which ‘pose questions.’ “The great glass” is an
algorithmic mechanism, or model of one.

“The Large Glass depicts a chain reaction among abstract forces. That’s why Duchamp

subtitled it "a delay in glass" - because it shows a sequence of interactions suspended in
time. This chain of events involves two component sequences, which intersect.

Part 2 Haecceitics The aesthetics of totalizable objects.

90

One sequence describes the interaction of female and male desire. Lets call it the Amours

Pursuit. It has a beginning and an end.

The other sequence describes the influence of chance and destiny. Lets call it the Fate

Machine. It is continually in motion.

Andrew Stafford

http://www.understandingduchamp.com/

And there are many other examples of Non-aesthetic objects functioning in or as
an Art Context. Kosuth’s work, Art & Language’s ‘The Air Conditioning Show’ – for
example.

Part 2 Haecceitics The aesthetics of totalizable objects.

91

A return to dogmatic metaphysics.

Within our program there are “impossibilities”. This excludes the non-halting
programs as they are definite, but certain programs which have code after the
Halt statement, this code is never executed. 10010100 Here 0101 – “input” x 2

and 10 – “output” are never executed. They are not ‘realizable’. Other
impossibilities exist. In the given instruction set above for instance certain ‘states’
can never arise. For example “00” in the Program Counter on a Halt instruction
with no overflow. Instruction sets could be devised for making these possible,
realizable. These programs do not represent anything in terms of higher levels,
they are not metaphysics but alternative universes in which ‘laws’ of one
‘universe’ are different, but not inferior or superior to laws in other universes.
Other alternative universes could or would have different laws which would realize
such ‘impossibilities’.

Other instruction sets can be created and physically/ phenomenologically
explored so long as we restrict these to two bits. (The restriction only being made
by human longevity rather than cognition!)These represent a collection of objects
with which we can gain an ‘absolute’ knowledge. And the possibility therefore of a
‘Dogmatic Metaphysics’. They have such properties, for us, as a result of their
limited sets of states. Larger ‘Universes’ are, for us, phenomenologically opaque.
These “2 bit” universes might appear trivial and non radical, yet they can be
thought of as being open to dogmatic metaphysical thought.

These objects do not radically challenge any other systems, or offer any concepts
unless we regard these apriori states as ‘indicative’. This is a philosophical
speculation and not an dogmatic metaphysical aesthetic. A speculation which
might claim that they do seem to represent ‘states’ no different from others. Pace
Adorno / Derrida’s impossibilities…… Or is it that these impossibilities which are
located in our universe are not bound by the same logic as 2 bit universes, are in
someway radically different.

An absolute knowledge?

Question – is the number of instruction sets fixed? Are there a fixed number of
operations. Given that compound instructions are not allowed – for that effectively
increases the (2 bit) Address space, the instruction set size would appear fixed.
To create infinites multiple operations of the same operation would be needed
and these couldn’t be effected using the given address space. (Esoteric – infinite -
operations are not allowed unless the physical devices are present to allow them.)
The model for our instruction set is finite, and knowable, the model of possible
instruction sets looks also finite though not knowable fully. Its hard to create
infinities with finite objects other than by repetitions.

The nature of these “Address spaces” – an address space is the maximum space
a CPU can address by virtue of its Instruction Pointer – i.e. 2 bits gives 2

2
 of an

address space which is 4 total locations. Each location has a number of bits which
in our case was 3 and then 2, which is the ‘word’ size of the given CPU. This

Part 2 Haecceitics The aesthetics of totalizable objects.

92

gives the total states that space can be in- which is 2
Address Space x Word Size

. For 2 bits
256. 4 locations of 2 bits each. 4 x 2 = 8. 2

8
 is 256. For 3 bit word / I.P. = 2

24
 or

16,777,216. These are not Synthetic Apriori states as they do not follow from the
facts of the Address space, they neither precede or follow – they are not logical
consequences but simultaneous. Just as 16,777,216 does not follow from 2

24
… or

the sequence 00000000000000000000000, 000000000000000000000001… does
not follow, they are ‘the same’ immediacy. Secondly, larger address spaces its
been noted cannot be aesthetically engaged with by humans. A property of these
larger spaces is that they become in appearance more and more like the world of
our external experiences. They can capture pictures, sounds, and moving images,
model buildings and structures. However as in the case of our simple CPU all
these models will have limits. All these will have rules, and sets of possible rules
will create different laws governing each universe. Some will be useful if they
match our own- those we experience in the world in which we live, in designing
bridges and buildings etc. But it is just as possible to have digital universes with
different “laws”. However these are not possibilities but “givens” when we have a
finite address space- or infinite address space. It might be that such givens are
non correlationist, non anthropological, dogmatic metaphysical objects, which lie
outside of any science which is in effect only ‘local’.

Part 2 Haecceitics The aesthetics of totalizable objects.

93

A definite absolute.

‘The real world’ including ‘real computers’ have sufficient states they can be in, to
make their behaviour opaque for us. Science simply generalizes models and
notes their correlation to the properties of nature which emerge from this opacity.
Philosophy pursues a more radical commitment to actuality, but it too can only
generalize. The gap between the complexities and accounts of them can be
regarded as dealt with by treating the many as one, as in the case of insurance
companies (and others) statistical assessments of reality.

Any move from 2 bits to 3 or 4 means we too would soon only be able to
‘generalize’ as to the possible or actual states of an object. These can take the
form of mathematical models, or empirical observations. Computer systems
behave in ways we can observe yet probably can never fully explain simply due to
the possible states they are capable of being in. We might take such observations
as signs of irrationality and / or intelligence. Philosophy in the history of
metaphysics has also attempted to conceptualize reality. Ignoring this we can
take one final move in the ‘opposite’ direction in terms of quantities. A 1 bit system
represents the lower limit of possible states, before non at all. In the opposite
upper direction we might consider 10

100
 or so as a theoretical upper limit of

possible states, as given by the estimated number of particles in the universe.
However its quite possible that there are other universes and if so this figure
would need to revised to an infinity. This presents both philosophy and science
with a problem, which is, given this infinity, all laws, not just those we find here,
would become realized. This realization is not a probability but an actuality. As we
have seen once you decide on an address space, apriori the combinations of bit
patterns, which represent programs and machine states is fixed. An infinite
address space would be no different. However the above is ‘lost’ to me as a non
philosopher, non scientist. What is not lost to me are objects that I can know at
first hand. These have been reduced to nothing substantial in the ‘real world’.
I may not know the fundamental state of the real world, but I do know the totality
of scenarios of a 2 bit universe.

With a one bit universe I can move to knowing every state and well as every
program, I can then see not just a given one bit CPU instruction set, and its
behaviour but ALL possible behaviours. For now the address space is 2, with
therefore 4 programs in total, 00,01,10,11. And given 1 bit I have 2 possible
instructions. 0 = halt 1 = add, for instance. We considered above, and worked
through programs which alter the machines state, the contents of its registers.
The 2 bit universe has a memory space of 8 locations and a program counter with
overflow (3 possible states i.e. 00, 01,10, 11 and overflow either 1 or 0) a control
unit (2), the Accumulator (5 – 2 inputs of 2, an output and overflow), and the I/O
register (2). This gives 20 possible states – some will not be possible in certain
instruction sets, but no more than 2

20
 possible states no matter what instruction

set we devise. 2
20
 is 1,048,576. Again the size removes the possibility of our

immediate total comprehension.

Part 2 Haecceitics The aesthetics of totalizable objects.

94

However with a 1 bit CPU (Universe) I can map the registers as well as knowing
all possible programs (scenarios) – only 4. If there are 5 registers, A program
counter, the Control Unit, the inputs to the ALU and its output, each being 1 bit,
plus the 2 bits of memory, we can only address 2 bits, location 0 and location 1,
then we have 7 in total bits which represent the CPUs possible states. 2

7
 is 128.

Here are the 128 total states for this 1 bit CPU.

Part 2 Haecceitics The aesthetics of totalizable objects.

95

0000000
0000001
0000010
0000011
0000100
0000101
0000110
0000111
0001000
0001001
0001010
0001011
0001100
0001101
0001110
0001111
0010000
0010001
0010010
0010011
0010100
0010101
0010110
0010111
0011000
0011001
0011010
0011011
0011100
0011101
0011110
0011111
0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010

0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111
1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111
1100000
1100001
1100010
1100011
1100100
1100101

Part 2 Haecceitics The aesthetics of totalizable objects.

96

1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

Part 2 Haecceitics The aesthetics of totalizable objects.

97

Where each of the first 5 bits represent a register, the last 2 the memory. Now
given our example instruction set above.

0 = halt
1 = Add

We can see that this list represents all possible states that this instruction set
could put the CPU into. But further it represents all the possible states ANY
instruction set can put the CPU into.

0 = move 1 to the Program counter
1 = Halt

0 = Halt
1 = set location 0 to 1

….

Etc.

The 128 states in the list above not only represents 1 instruction set’s programs
as we examined in our 2 bit universe – whose instruction set we fixed – i.e. its laws
of possible behaviours, but ALL states for ALL instruction sets. All possible
behaviours – i.e. The totality of all laws and states or histories this CPU can have.

If we regard a program as an object, it will have component parts, instructions and
data. In our 2 bit example each of these was 2 bits and we noted in some cases a
program can treat an instruction on a second or third pass as data. That is a case
where meaning is not fixed, in others meaning is fixed. We can undermine these
objects, programs, to their constituent instructions, and these to their bits.
However this doesn’t mean a program can be understood by knowing its precise
fundamental constituents, as in the case of

196 11000011 loop ctr 1 Halts___ Executes Data
200 11000111 loop ctr 1 Halts___ Executes Data
204 11001011 loop ctr 1 Halts___ Executes Data
208 11001111 loop ctr 1 Halts___ Executes Data
244 11110011 loop ctr 2 Halts___ Executes Data

These treat 00 as data in one pass and as the Halt instruction in another. Knowing
the 00 component as a fundamental part of the object doesn’t reveal fully what the
object ‘is’. However we can by direct experience of the object ‘know’ it fully, in this
case know that on one pass 00 is data on another it is HALT, for this particular
program / object. We can its been seen also ‘overmine’ in classification of ‘types’,
species of programs. Perhaps we can not properly regard such activities as
‘science’ or ‘metaphysics’. We might want to regard 11000011 as an ‘object’, as
of singular interest, as an ‘art’ object. (a picture or poem!)

Part 2 Haecceitics The aesthetics of totalizable objects.

98

From our understanding of the CPU’s function we can establish certain facts. For
instance ‘identity’. Within simple computer science this test was given when the
result of a subtraction is zero. ‘Meaning’ is the bit string’s context, i.e. 111 is ADD
or 7 or –1, within the given laws of the instruction set.

A dogmatic metaphysics can discover ‘facts’ from these systems. (though of
interest, their wider scope is outside of this present work) Here I present 10 as a
beginning, but I doubt this list is definitive.

1. An objects self annihilation is its identity.
2. A definite absolute is a genetic device.
3. The essence of an object is the totality of the total multiple universes.
4. Onticity and Ontology are identical.
5. Justice is the acknowledgement of an object’s identity.
6. Law is the acknowledgement of the essences of an object.
7. An ethics can be made by seeing that laws should acknowledge an

objects identity.
8. Truth is that objects are just.
9. Thinking is the pursuit of Justice.
10. The concept and the object are the same.

Part 2 Haecceitics The aesthetics of totalizable objects.

99

Dogmatic Metaphysics: 1

Difference and absolute Difference.

Within a single bit CPU only a difference between 1 & 0 exits. Hence there can
only be 2 possible actions in its instruction sets. However there are 128 possible
states, each being different. Analysis of differences is not however needed even
though this is possible. For instance 1000000 & 0000000 have differences – one
has 7 0s the other 6, one has one 1, the other none, one has a 1 in the first left
position of the string, the subtractive difference is 128, the play of differences is
even here quite rich. However the absolute difference is as we have seen the
simple matter of subtraction… in that any non zero result is different. If x-y = 0 they
are identical. An objects self annihilation is its identity, or its failure at annihilation
the proof of its non-identity.

Dogmatic Metaphysics: 2

1101011

1101011 is an absolute state (1 of 128). If we ask what 1101011 means, given
the 128 states it could be any of the total states which the totality of instruction
sets are. This is an ontological ground which represents a totality. It is an absolute
state.

1101011

Is epistemologically transparent, we can know it, it is ontologically transparent, we
can see this. And it is ontically a totality, and therefore a genetic device…

A definite absolute is a genetic device.

Dogmatic Metaphysics: 3

Essence, existence and Identity.

Essence is given apriori, as is existence. Identity is the objects self annihilation.
Thus its existence is regardless of its essence. 1000000 – x = 0,
Here x’s essence is known- 1000000, x-y = 0, x’s essence is unknown but its
existence is. Similarly essences of ‘large’ objects – real objects are very large,
here they are 7 bits, hence knowable. Existence is knowable as the possibility of
annihilation, removal.. though this does not reveal essence. The essence of an
object is the totality of the total multiple universes. The totality is the finitude of all
programs and states. As in 2+5 = 2

7
 states is the multiverse which gives the finite

essence of each object.

Dogmatic Metaphysics: 4

Representation: A object represents itself. Onticity and Ontology are identical.

Part 2 Haecceitics The aesthetics of totalizable objects.

100

Dogmatic Metaphysics: 5

Justice is the acknowledgement of an object’s identity.

Dogmatic Metaphysics: 6

A law describes the violation of a state, the impossibility of a state within the given
laws. This possibility then can only be actualized by another set of laws. Laws
here are instruction sets. A morality can be constructed by seeing that laws must
acknowledge an objects identity as a matter of its existence even if its essence is
unknown, and that justice is apriori in the existence of an object. Law is the
acknowledgement of the essences of an object.

Dogmatic Metaphysics: 7

An ethics can be made by seeing that laws should acknowledge an objects
identity.

Dogmatic Metaphysics: 8

Truth is that objects are just.

Dogmatic Metaphysics: 9

Thinking is the pursuit of Justice.

Dogmatic Metaphysics: 10

The concept and the object are the same.

1101011 and the concept 1101011 are identical. If they were not identical then
their relationship would be of difference, of two different objects. That the
“concept” ‘triangle’ doesn’t ‘capture’ all triangles shows that it is not a concept
which is complete, but a generalization. Such as 7 binary digits. How ‘7 binary
digits’ is in no way the concept of 1101011 should be obvious- given an
instruction set we would not know anything from this ‘concept’ ‘7 binary digits’.
Within epistemological metaphysics language becomes separate from its object-
within dogmatic metaphysics they are one-and-the-same. Hence the idea of
‘poetry’ becoming the metaphysics of objects. A poem’s object is itself. What is
lost in translation is ‘everything’, is its ‘being’.

